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Introduction

We usually want algorithms that

1) in polynomial time,

2) for all instances,

3) find an exact solution.

Unfortunately some problems are hard, and we may have to settle for (at
best) 2 out of 3. We call such algorithms
Exact exponential algorithms

if we relax 1) to allow using exponential time.
Parameterized algorithms

if we relax 2) to instances with small fixed values of some parameter.
Approximation algorithms

if we relax 3) to allow approximate solutions (next 2 lectures).
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Exact exponential algorithms



Exact exponential algorithms

Recall that a decision problem is in NP if and only if there exists:
I A polynomial-time verifier R(x , y); and
I a function m(x) 2 O(poly|x |); such that
I for every problem instance x : x is a yes-instance if and only if there

exists a certificate y of size |y |  m(x) such that R(x , y) is true.
Note: A certificate is a proof that a solution exists, but does not have to
be a solution. However, a solution is often the most natural certificate.

Note: Every optimization problem has a decision version. What is it?

Instead of asking for the “best” value z with some property, ask whether a
value z given as part of the input has that property.

Every problem in NP has a simple brute-force algorithm of the following
form: Given problem instance x , try all potential certificates y with
|y |  m(x) and check if R(x , y) for any of them.

Since a potential certificate is just a bit string of length at most m(x)

there are at most O(2m(x)
) potential certificates to check, and each check

takes O(poly|x |) time. Thus, if we assume m(x) can be computed in
O(poly|x |) time, the brute force running time is O(2m(x)

poly|x |).
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Notation: O
?(·)

For any fixed b > a � 1, and c 2 R, we have O(a
n
· n

c
) ⇢ O(b

n
).

So when comparing exact exponential algorithms, the polynomial factors
are mostly irrelevant.

Define

f (n) 2 O
?
(g(n)) () 9c 2 R : f (n) 2 O(n

c
· g(n))

In other words, O?
(·) is the same as O(·) but ignores polynomial factors.

Notice that for all b > a � 1: O(a
n
) ⇢ O

?
(a

n
) ⇢ O(b

n
).

Using this notation, what is the running time for the simple brute-force
algorithm?

O
?
(2m(x)

)
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Size of a problem

What do we mean by the “size” n of a problem? Typically:
n, or m + n for graphs with n vertices and m edges.
|S | for problems involving some set S .
#variables for SAT-type problems.
This measure of “size” is usually sufficient to describe the running time of
the natural brute-force algorithm and to show improvements in better
algorithms.

Problem certificate size brute-force time

this lecture

SAT, MIS m(x) = n T (n) 2 O
?
(2n)

O
?
(3n/3)

TSP m(x) = log2(n!) T (n) 2 O
?
(n!)

O
?
(2n)

k-Vertex Cover m(x) = k log2(n) T (n) 2 O(n
k
· poly|x |)

Ok(m + n)

Vertex k-coloring m(x) = log2(k
n
) T (n) 2 O

?
(k

n
)

?
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TSP via Dynamic Programming (Bellman-Held-Karp)

Problem: Given cities c1, . . . , cn, and distances dij = d(ci , cj ), find tour of
minimal length, visiting all cities exactly once. Equivalently, find
permutation ⇡ minimizing d(c⇡(n), c⇡(1)) +

P
n�1
i=1 d(c⇡(i), c⇡(i+1)).

Idea: For all S ✓ {c2, . . . , cn} and ci 2 S define OPT[S , ci ] := minimum
length of all paths in S [ {c1} that starts in c1, visits all of S once, and
ends in ci . Then min

�
OPT[{c2, . . . cn}, ci ] + d(ci , c1)

�� ci2 {c2, . . . , cn}
 

is the length of the minimal tour.

OPT[S , ci ]:
c1

S

ci

Lemma
OPT[S , ci ] =

(
d(c1, ci ) if S = {ci}
min

n
OPT[S \ {ci}, ck ] + d(ck , ci )

��� ck 2 S \ {ci}
o

if {ci} ⇢ S

Proof.
Let e = (ck , ci ) be the last edge on such a path. If k = 1 we are done. If
k 6= 1 the shortest length through e must be OPT[S \ {ci}, ck ] + d(ck , ci ).
The shortest such path must use the minimum over all ck 2 S \ {ci}.
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We can compute all OPT[S , ci ] values in order of increasing size of S .
1: function TSP({c1, . . . , cn},d)
2: for i  2 . . . n do
3: OPT[{ci}, ci ] d(c1, ci )

4: for j  2 . . . n � 1 do
5: for S ✓ {c2, . . . , cn} with |S | = j do
6: for ci 2 S do
7: OPT[S , ci ] min{OPT[S \ {ci}, ck ] + d(ck , ci ) | ck 2 S \ {ci}}
8: return min{OPT[{c2, . . . cn}, ci ] + d(ci , c1) | ci 2 {c2, . . . , cn}}

Lemma
The above procedure solves TSP by computing O(n

2
· 2n) shortest paths.

Proof.
The number of path lengths computed in line 7 is

n�1X

j=2

✓
n � 1
j

◆ jX

i=1

(j � 1)  n
2

nX

j=1

✓
n

j

◆
= n

2
· 2n

And lines 3 and 8 compute only n � 1 more path lengths each.
What is the running time of the algorithm?

O
?
(2n) if we assume additions

take at most polynomial time in n. Much better than O
?
(n!).
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Dynamic Programming in general

Similar to “Divide and Conquer” in that it requires “Optimal Substructure”
but subproblems may be overlapping.

Instead of recursively solving smaller disjoint subproblems, “Dynamic
Programming” solves all smaller subproblems in order of increasing size.

A hybrid idea called “Memoization” (not “Memorization”!) does the same
by using recursion, but caching results so each subproblem is only solved
once.

In our TSP example the original problem does not have the optimal
substructure property (A piece of an optimal tour does not have to be an
optimal tour of some subgraph). The trick is to notice that the problem of
computing OPT[{c2, . . . , cn}, ci ] does have the property, and that TSP
can be solved once we know that for all ci .
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MIS via Branching

Problem: Given undirected graph (V ,E ), find the maximum cardinality of
I ✓ V so each edge has at most one endpoint in I .

Such a set I is called a Maximum Independent Set (MIS) for the graph.

Naive: Try all 2n subsets (where n = |V |). This takes O
?
(2n) time.

For v 2 V define N[v ] := {v} [ {w 2 V | (v ,w) 2 E}. This is called the
closed neighborhood of v .

Observation: N[v ] \ I 6= ; for all v 2 V and all MIS I .
Why?

If N[v ] \ I = ; for some v 2 V , I [ {v} would be a larger solution.

1: function MISsize(G = (V ,E ))
2: if V = ; then return 0
3: v  vertex in V of minimum degree.
4: return 1 +max{MISsize(G \ N[w ]) | w 2 N[v ]}
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MIS via Branching

Let T (n) be the maximum number of subproblems considered by the
branching algorithm on a graph with n vertices, then (very loosely):

T (0) = 1

T (n)  1 +

X

w2N[v ]

T

⇣
n � (d(w) + 1)

⌘
for some v 2 V of mini-
mum degree

 1 + (d(v) + 1) · T
⇣
n � (d(v) + 1)

⌘
since T (·) is nondecreasing

= 1 + s · T (n � s) where s = d(v) + 1 and
thus s 2 {1, . . . , n}

Lemma
T (n) 2 O(3n/3) ⇢ O(1.44225n)

“Proof” (spot the error).
T (n)  1 + s · T (n � s)

 1 + s + s
2
+ · · ·+ s

n/s

=
s
1+n/s�1
s�1 < 2sn/s (for s � 2)

2 O(s
n/s

) ✓ O(e
n/e

) 5 10 15 20

1.1

1.2

1.3

1.4

1.5

1 e
1.0

s
1/s

s
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AADS Lecture 9, Part 3

Parameterized problems



“Bar fight prevention” aka k-Vertex Cover

Problem: Bouncer in a small city wants to block people at the door to
prevent fights. Assume he knows everyone and knows which pairs of
people would fight if they were both let in. Management only allows him
to block  k of the n people who wants in. Is that enough to prevent
fights, and if so, who should be blocked?

Equivalent Problem: Given a graph (V ,E ) with n = |V | vertices, is
there a subset C ✓ V of size |C |  k such that every edge has at least
one endpoint in C? Such a set C is called a k-Vertex Cover in the graph,
and its complement V \ C is an Independent Set of size n � k .

For concreteness in the following, suppose n = 1000 and k = 10.
Naive 1: Try all 2n subsets of people. (21000

⇡ 1.07 · 10301 cases).
Naive 2: Use MIS algorithm. (2 · 31000/3

� 1 ⇡ 2.195 · 10159 cases).
Better 1: Try all

�
n

k

�
subsets of k people. (

�1000
10

�
⇡ 2.63 · 1023 cases).
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“Bar fight prevention” via Kernelization

Consider the conflict graph G = (V ,E ).

Idea: If d(v) = 0: let v in and drop v from G .
Why?

Safe because no conflicts.

Idea: If d(v) � k + 1: reject v , drop v from G , and decrease k .
Why?

Not rejecting v means rejecting d(v) > k people.

Note: If d(v)  k for all v and |E | > k
2, there is no solution.

Why?

Each rejection resolves at most k conflicts.

Better 2: The above ideas reduce to a graph H with |V |  2k2 vertices.
Why?

|V | =
P

v2V
1 

P
v2V

d(v) = 2|E |  2k2

Now try all
�2k2

k

�
subsets of k people. (

�2·102

10

�
⇡ 2.24 · 1016).

Idea: If N[v ] = {v ,w}: let v in, reject w , drop N[v ] from G , and
decrease k .
Why?

In any solution that lets w in, we can let v in instead. Never worse.

Better 3: The above ideas reduce to a graph H with |V |  k
2 vertices.

Why?

|V | =
P

v2V
1 =

1
2
P

v2V
2  1

2
P

v2V
d(v) = |E |  k

2

Now try all
�
k
2

k

�
subsets of k people. (

�102

10

�
⇡ 1.73 · 1013).
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“Bar fight prevention” via Kernelization

1: function BarFightPrevention(k,G)
2: k

0,H,C  BFP-Kernel(k,G)

3: if H has  (k 0)2 edges and BFP-Brute-Force(k 0,H) returns a solution C
0 then

4: return C [ C
0

5: return “No solution”

6: function BFP-Kernel(k,G)
7: k

0  k, H  G , C  ;
8: loop
9: if Some v has d(v) = 0 then

10: H  H \ {v}
11: elseif Some v has d(v) � k

0 + 1 then
12: H  H \ {v}, C  C [ {v}, k 0  k

0 � 1
13: elseif Some v has N[v ] = {v ,w} for some w then
14: H  H \ N[v ], C  C [ {w}, k 0  k

0 � 1
15: else
16: return k

0,H,C

17: function BFP-Brute-Force(k,G = (V ,E))
18: for every subset C ✓ V of size k do
19: if C is a vertex cover of G then
20: return C

21: return “No solution”



Kernelization

The subgraph H we reduced to before brute-forcing is called a Kernel for
the Bar Fight Prevention problem, and the process of finding such a kernel
is called Kernelization.

The general idea is to use the parameter k to quickly reduce to a smaller
subproblem of the same type, whose size ideally depends only on k and
not on n. For the bar fight prevention problem we have just shown that:
I If there is a solution for a given k and a given graph G with n vertices

and m edges, then we can find a kernel H with at most k2 vertices.
I Furthermore, such a kernel can be found in O(m + n) time, and

checking if a given subset of size at most k is a solution can be done
in O(k

2
) time.

I Thus, for any fixed k , the total running time of this algorithm is
O(m + n +

�
k
2

k

�
k

2
) ✓ O(m + n + (ke)

2k+2
) = Ok(m + n).
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“Bar fight prevention” via Bounded Search Tree

Note: For each edge (u, v) 2 E , at least one of u, v must be rejected.
Idea: Pick arbitrary edge (u, v), and recursively try with u rejected and
with v rejected.

1: function BFP-Bounded-Search(k,G)
2: if G has an no edges then
3: return ;
4: if k > 0 then
5: Let (u, v) be an arbitrary edge of G
6: for w 2 {u, v} do
7: if BFP-Bounded-Search(k � 1,G \ {w}) returns a solution C then
8: return C [ {w}
9: return “No solution”

This recursive procedure has depth at most k .
Thus the total number of subproblems considered at most 2k .
If we start by rejecting all vertices of degree d(v) � k + 1 (like in the
kernelization approach), the resulting graph has at most
|E | =

1
2
P

v2V
d(v) 

1
2nk edges, so constructing each subproblem can be

done in O(nk) time.
The total running time is then O(m + nk · 2k). (1000 · 10 · 210

⇡ 107)
Part of Assignment 5 asks you to improve this.
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2: if G has an no edges then
3: return ;
4: if k > 0 then
5: Let (u, v) be an arbitrary edge of G
6: for w 2 {u, v} do
7: if BFP-Bounded-Search(k � 1,G \ {w}) returns a solution C then
8: return C [ {w}
9: return “No solution”

This recursive procedure has depth at most k .
Thus the total number of subproblems considered at most 2k .
If we start by rejecting all vertices of degree d(v) � k + 1 (like in the
kernelization approach), the resulting graph has at most
|E | =

1
2
P

v2V
d(v) 

1
2nk edges, so constructing each subproblem can be

done in O(nk) time.
The total running time is then O(m + nk · 2k). (1000 · 10 · 210

⇡ 107)
Part of Assignment 5 asks you to improve this.
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AADS Lecture 9, Part 4

FPT vs XP



FPT vs XP

An important feature of the Bar Fight Prevention problem is the existence
of the parameter k . The problem of finding the minimum k that works is
NP-complete, but for any fixed constant k we have just seen two
linear-time algorithms!

We say the problem is parameterized by the parameter k . In this case k is
the maximum solution size, but other problems may have different
parameters (and may have more than one).

Definition: A parameterized problem is Fixed Parameter Tractable (FPT)
if it is has an algorithm with running time f (k) · n

c for some function f

and some constant c 2 R.

Definition: A parameterized problem is Slice-wise Polynomial (XP) if it is
has an algorithm with running time f (k) · n

g(k) for some functions f , g .

Note: FPT ⇢ XP, why?

Simply set g(k) = c .
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Example: Vertex k-Coloring

Problem: Given graph G and an integer k , does G have a proper vertex
coloring with k colors?

Lemma
Unless P = NP , this problem is not XP and therefore not FPT.

Proof.
The problem is NP-hard even for k = 5, so unless P = NP there can be
no algorithm for general k with running time f (k) · n

g(k).



Example: k-Clique

Problem: Given graph G and an integer k , does G have a clique of size k?

Lemma
k-clique is XP.

Proof.
A simple brute-force algorithm is to check every k-subset of the vertices.
There are

�
n

k

�
 n

k such subsets, and we can check in O(k
2
) time whether

a given subset forms a clique. Thus the running time of this algorithm is
O(k

2
· n

k
) which proves the problem is in XP.

It is unknown whether k-clique is FPT, but it is widely believed that
O(n

k
) is optimal which would prove it is not.



Example: k-Clique parameterized by �

Problem: Given graph G with maximum degree �, does G have a clique
of size k?

Lemma
k-clique is FPT when parameterized by the maximum degree �.

Proof.
A naive algorithm is for each vertex to try all subsets of its neighbors.
There are at most n · 2� such subsets and each can be checked in O(�

2
)

time. The total time is thus O((2� ·�
2
) · n), which proves the problem is

FPT.
In fact, we can easily improve this algorithm to run in
O(

�
�

k�1

�
· k

2
· n) ✓ O(�

k�1
· k

2
· n) time.

There are often many possible choices of parameter. Choosing the right
one for a specific problem is an art.



Summary

Todays topics were “Exact exponential algorithms” and “Parameterized
Complexity”. We have covered
I The natural brute force algorithm for problems in NP.
I An exact O?

(2n)-time dynamic programming algorithm for TSP.
I An exact O?

(3n/3)-time branching algorithm for MIS.
I A kernelization for the “Bar Fight Prevention” problem, a.k.a.

k-vertex cover.
I A bounded search tree algorithm for k-vertex cover.
I Definitions of parameterized complexity, FPT and XP.
I Examples of problems in FPT, XP but not FPT, and not XP.
I Next time: Approximation algorithms
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