
Note for Hashing

Hash function => The function is chosen at random.

Given a typically large universe of keys, and a positive integer . A random hash function
 is a randomly chosen function from .

My Understanding - 1

A random hash function is firstly a function that is selected from a set of hash functions
randomly and it can map the keys from to a range of numbers .

Equivalently, => For each , the value at is chosen at random.

It is a function such that for each , is a random variable.

My Understanding - 2

A random hash function is let each key in be the variable, and the result of hashing every time
is random. For example, means hashing. . are random variables.

Chinese Version

1. 随机哈希函数⾸先是⼀个从⼀个含有多个hash functions的集合⾥随机挑选出来的⽅程，
使得 .

2. 同样可以理解为⼀个哈希⽅程是让 ⾥的每⼀个值作为哈希⽅程的⾃变量，每次对该⾃
变量映射的结果都是随机的。

宏观上来看，每⼀个值在经过随机哈希后，输出的值是随机的。

Cryptographic hash functions such as MD5, SHA-1, and SHA-256 are not random hash
functions.

Three things we care

1. Space (seed size) needed to represent . => the size of , cannot be too big
2. Time needed to calculate given . => The inner part of a lot of algorithms is

hashing.
3. Properties of the random variable.

Hash function types

Truly random

A hash function is truly random if the variables for are independent
and uniform.

⼀个哈希⽅程想要 truly random，就得满⾜对于 的结果每次都是 种可能，每次
hashing的结果互不影响（独⽴），且概率都⼀样，都是 （统⼀）。

⼀共有 个输⼊，对于每⼀个输⼊，需要对应 个输出，此时⼀个输⼊需要 字节在计
算机⾥，则⼀共需要 个空间。

Universal

A random hash function is universal if, for all
. => Hash to the same value.

C-approximately universal

A random hash function is c-approximately universal if, for all
.

Strongly universal

A random hash function is strongly universal (a.k.a. 2-independent) if,

1. Each key is hashed uniformly into . => i.e., .
2. Any two distinct keys hash independently.

Equivalently, if for all , and .

C-approximately strongly universal

A random hash function is c-approximately strongly universal if,

1. Each key is hashed c-approximately uniformly into . => i.e.,

2. Any two distinct keys hash independently.

Unordered sets / Hashing with chaining

Maintain a set of at most keys from some unordered universe , under three operations.

INSERT(x, S) Insert key into .

DELETE(x, S) Delete key from .

MEMBER(x, S) Return .

We could use some form of balanced tree to store , but they usually take time operation,
and we want each operation to run in expected constant time.

The worst case for both INSERT and DELETE is rotating times. And the worst case of
MEMBER operation is finding the leaf node. That's the reason why these three operations are all
run in , while hashing can help us run these three operations in constant time. =>
Hashing with Chaining

Hashing with Chaining => Universal Hashing

Then, we store an array where the index of in this array is a head of a linked list that contains
all the elements in our sets that hashed to that element.

这三个⽅法所花费时间都和链表长度成正⽐。

Each operation take time. And we need to prove the former part is a constant
time.

Theorem - 1

For . => 找不存在在集合⾥的 所花费的时间。某种程度上算是最差
情况，如果最差情况也被bound住，那⼀般情况肯定在bound⾥。

Proof.

This actually proves that hashing with chaining and expectation you use only constant time per
operation.

Signatures => Universal Hashing

Multiply-mod-prime (2-approximately strongly universal)

It is the most classic but not the fastest. However, it is good enough for some applications.

Multiply-shift (2-approximately universal) => Universal Hashing

Extremely cheaper to compute.

Strong Multiply-shift => Strongly Universal Hashing

It is a strongly universal hash function.

Coordinated sampling => Strongly Universal Hashing

Lemma

How good is the unbiased estimate with Lemma?

	Note for Hashing

