Note for Hashing

e Hash function => The function is chosen at random.

Given a typically large universe U of keys, and a positive integer m. A random hash function
h : U — [m] is a randomly chosen function from U — |[m)].

My Understanding - 1

A random hash function is firstly a function that is selected from a set of hash functions
randomly and it can map the keys from U to a range of numbers 0, ..., m — 1.

Equivalently, => For each z, the value at = is chosen at random.
It is a function h such that for each € U, h(z) € [m] is a random variable.
My Understanding - 2

A random hash function is let each key in U be the variable, and the result of hashing every time
is random. For example, h; means i’ hashing. h1(z) = a, ho(x) = b. a b are random variables.

Chinese Version

L. FEHLIG A BRI B2 — N —> & £ hash functions i) 5 & LR LBk H R B 7772
17U — [m].

2. [AlFER] DL — AR TR LU B — MEVE MR A TR A AR, BN E
AR Sk LS) 45 SRR A REATLAY o

EMERE, B MEELL YIS RS . fthr EE LT .

Cryptographic hash functions such as MD5, SHA-1, and SHA-256 are not random hash
functions.

o Three things we care

1. Space (seed size) needed to represent h. => the size of Sp, cannot be too big

2. Time needed to calculate h(x) given x € U. => The inner part of a lot of algorithms is
hashing.

3. Properties of the random variable.

e Hash function types
Truly random

A hash function h : U — [m] is truly random if the variables h(x) for z € U are independent

and uniform.

— MR T REARE truly random, WAFHEX Tz € U, h(z) S5 RBERE m PIATgE, K
hashingf £5 R EAHM Osn) , HAESRH—FE, #E (F—) .

U | PN W TFLE— D HIA B Xm0 A 5 Fog, m Z T 7ET
B, I —HEEU| logy mANZE .

Universal

A random hash function h : U — [m] is universal if, for allz # y € U : Pr[h(z) = h(y)] <

. => Hash to the same value.

1
m
C-approximately universal

A random hash function h : U — [m] is c-approximately universal if, for all
x#yecU:Prlh(z) = h(y)] < =.

Strongly universal

A random hash function h : U — [m] is strongly universal (a.k.a. 2-independent) if,

L
—.

1. Each key is hashed uniformly into [m]. =>i.e.,Vz € U,q € [m] : Pr[h(z) = q| =
2. Any two distinct keys hash independently.

Equivalently, if for all z # y € U, and q,r € [m] : Pr[h(z) = ¢ A h(y) =r] = #
C-approximately strongly universal

A random hash function h : U — [m] is c-approximately strongly universal if,

1. Each key is hashed c-approximately uniformly into [m]. => i.e.,
Vz € U,q€ [m]:Prlh(z) =q < =
2. Any two distinct keys hash independently.

o Unordered sets / Hashing with chaining
Maintain a set S of at most n keys from some unordered universe U, under three operations.

INSERT (x, S) Insertkey x into S.

DELETE (x, S) Delete key from S.
MEMBER (x, S) Returnz € S.

We could use some form of balanced tree to store S, but they usually take O(log n) time operation,
and we want each operation to run in expected constant time.

The worst case for both INSERT and DELETE is rotating log, n times. And the worst case of
MEMBER operation is finding the leaf node. That's the reason why these three operations are all
run in O(log n), while hashing can help us run these three operations in constant time. =>
Hashing with Chaining

e Hashing with Chaining => Universal Hashing

Hashing with chaining

|dea: Pick m > n and a universal h: U — [m].
Store array L, where
L[i] = linked list over {y € S | h(y) =1

m>n

CTTIITTT T L] —> We sowe an amey vhere inden of 7
Ihf)%}mvw):‘g o hend N
linged 13t thar Gentaing odl The
tyereri, in sur sets Thet hoas hed
fo that clemet

ot verj arn

Each operation takes O(|L[h(x)]| +1) time. s, hiY) A radex
Wik ik A51Y
Hashing with chaining AKXty

Theorem
Forx ¢ S, E[fL[h(x)]}] <1

Then, we store an array where the index of ¢ in this array is a head of a linked list that contains
all the elements in our sets that hashed to that element.

X =ATTE T R HR AN B K B T b |

Each operation take O(|L[h(x)]| + 1) time. And we need to prove the former part is a constant
time.

e Theorem -1

Forz ¢ S,E[|L[h(z)]]] < 1. => WAFFLEELE BE 2 FTIE Tl SERPFREE R
THOL, IR ZF O W bound E, HR— Bl 5 E 7Ebound HL,

Proof.
E[|L[h(2)]]) = E[[{y € S|h(y) = h(x)}]] < By definition

=E [Z [h(y) = h(a:)]] < Indicator variable

yes
= Z E| (x)]] <= Linearity of expectation
yes
= Z Pr[h (z)] <= Ezpectation of indicator variable
yeS

1
< |S|— <« Since ¢ # y = Universal
m

n
- — <1
m

This actually proves that hashing with chaining and expectation you use only constant time per

operation.

o Signatures => Universal Hashing

Application: Signatures

Problem: Assign a unique “signature” to each x € S C U,

|S| = n.

Solution: Use universal hash function s : U — [n®]. ~ The PV"ZNW(‘W et
o w i awy m

Then by a “union bound)\{* cheion 97”“% R
wi .zlu T we
Pridix,y} € 5| s({Z}SPr[S :4\)] mhsm ’; ‘;’?:‘s)v:’mbnrv/ novt
x,y }C .
/—U P(G)T P(E) @ V%ﬁ n chrse 2 ﬁPahr %ﬁpm\r @ﬁ})ﬁ ne
"’(P(U w > NSV

"0 @i‘” g MER I, n o ik
Thus with “high probability” we have no collisions. @ 7k Vﬂ»%};}},{% 7ﬂwﬁ%q\
Wnivers ol h%h ‘F‘ﬂ

Mm 40 (/"W’]) wtls

e Multiply-mod-prime (2-approximately strongly universal)

It is the most classic but not the fastest. However, it is good enough for some applications.
Multiply-mod-prime

Let U = [u] and pick prime p > u. For any a, b € [p], and
m < u, let h7y . U — [m] be

h7y(x) = ((ax 4 b) mod p) mod m

Wé/@ﬁ} bfo

Choose a, b € [p] independently and uniformly at random, and
let h(x) := h7,(x).

Then h: U — [m] is a'2-approxi ngly universal ha
function.

%WX E\» Loy @it A ¢ w4

Multiply-shift —5 vt t work with

Let U = [2*] and m = 2¢. For any odd a € [2"] define

(ax) mod 2%

ha(x) := { St JW; W‘?IAW Pt ward with /bwcv/f/v

Choose odd a € [2%] uniformly at random, and let

h(x) := h,(x).

Then h: U — [m] is a 2-approximately universal hash o= 6Y o i
function. i@% (/thj %’” S]\TVMM X\%ﬂ . &%ﬁ . Iﬂﬂ?ﬁ’ﬁ%ﬁlﬁ‘ P o

Exercise 3.4 asks you to show if there is some constant ¢ so it

is c-approximately strongly universal. ﬁﬂ& ghcﬂ/r . Opute

e Multiply-shift (2-approximately universal) => Universal Hashing
Extremely cheaper to compute.

o Strong Multiply-shift => Strongly Universal Hashing
It is a strongly universal hash function.

e Coordinated sampling => Strongly Universal Hashing

Application: Coordinated sampling

i adh % A1 i - 2§
Suppose we have a bunch of agents that each observe some L 2720 - T $ont qglai)AR,
set of events from some universe U. Let A; C U denote the s_/’:f> greita 4h ﬂ\’ i %ﬂ% 2
set of events seen by agent i, and suppose |A;] is large so only 2R 01 SR
a small sample S; C A; is actually stored.

If each agent independently just samples a random subset of g§> ’JCV%\ E\/Y /]»\ng\ﬁ %ﬁ"@/’éﬂ sy
the seen events, there is very little chance that two agents < 4 %/Jé %'l - T%ﬂ ;,(?\Wf%
that see an event make the same decision. m’/" T n
— The samples are incomparable. 5; 9_\01‘%732 —?17
Coordinated sampling means that all agents that see an event -
make the sa ision_abo er to store it. oA WA -1 M\ﬂ% (-11 %))
amples can be combined, i.e. .T;p)]m (‘7 ﬂ\ \)
> S US; is a sample of A; U A; %MJK M\%Z‘&,&}ﬁuﬂl‘v , ﬁ’(};[f AL
> S5iNS;is a sample of A; N A %?X\Z\s

Let h: U — [m] be a strongly universal hash function, and let

t € {0,...,m}. Send h and t to all the agents. t
Each agent samples U ifF > S/ S
0 nE <t m

LT W AT ANM,

AR WD\ o TR H0<
WP T Si%1paH% 4.

U
?WF%

Application: Coordinated sampling

Let h: U — [m] be a strongly universal hash function, and let
t €4{0,...,m}. Send h and t to all the agents.

Each agent samples x € U iff h(x) < t. / -

Thus if an agent sees the set A C U, the set

Sni(A) :={x € A| h(x) < t} is sampled. Note that
> 5/,7,_»(/4,') U Sh7t(Aj) = Shjt(A,- U AJ-) _ J /W
b S5 (A) N ShilA) = Sne(AN A) Lnon =

Each x € A is sampled with probability Pr <t]==L.

Why? Strong ugi@v?&sality —> h(x) uniform In

For any A C U, E[[Sre(A)[] = |Al - £. ¥ 7%4—73‘04&7"\/““]‘ Al

- (
Thus we have an u]ngiased estimate |A] = T - |5, ¢(A)].

=
)

@i <t W)ﬂ/%%’%

How good is this estimate?

e Lemma

Lemma
Let X =" .2 Xa where the X, are pairwise independent 01 variables.
Let u = E[X]. Then Var[X] < u, and for any q > 0,

Prl|X — ul > qy/p] < &

Proof (not curriculum).
For a € A let p, = Pr[X; = 1]. Then p, = E[X;] and
Var[X,] = E[(X; — pa)’] = (1 = p5)(0 = pa)® + pa(l — ps)°
= (3 + Pa(1 = pa))(1 = pa) = pa(1 = pa) < pa

Var[X] = Var{ZX] = ZVar[Xa] < Zpa =p

acA acA acA

Finally, since ox = /Var[X] < /i we get:
Pr[X — ul > q/u] < Pr[|X — p| = qox]
< ;—2 (Chebyshev's ineq.) [J

e How good is the unbiased estimate with Lemma?

Application: Coordinated sampling

Let's apply this lemma to the estimate |A| =~ 7|5, +(A)| from
our coordinated sampling.

Let X = |Sh:(A)| and for a € A let X, = [h(a) < t]. Then
X =73 .caXsand forany a,bc A X, and X,, are
independent. Also, let = E[X] = L|A|.

Then for any g > 0,
Pri|2(Sh(A)| = Al| > g1/ ZIAl
= Pr|[ISe(A)] = £1Al| = ay/ 514
=Pr(IX —ul > qy/n] < &

We needed strong universality in two places for this to work.
Where? h must be uniform to get unbiased estimate, and
pairwise independent for the lemma.

Todays topic was hashing, and we have covered

>

>

What is a random hash function, and what properties do
we want.

Two applications of universal hashing — unordered sets
and signatures. Vi

Some concrete universal or strongly universal&sh
functions.

An application of strongly universal hashing\7
coordinated sampling.

Next time: An ordered set data structure that is not
comparison based, and an application of hash tables.

	Note for Hashing

