Note for Hashing

• *Hash function* => The function is chosen at random.

Given a typically large universe U of keys, and a positive integer m. A random hash function $h: U \to [m]$ is a randomly chosen function from $U \to [m]$.

My Understanding - 1

A random hash function is firstly a function that is selected from a set of hash functions randomly and it can map the keys from U to a range of numbers $0, \ldots, m-1$.

Equivalently, => For each x, the value at x is chosen at random.

It is a function h such that for each $x \in U$, $h(x) \in [m]$ is a random variable.

My Understanding - 2

A random hash function is let each key in U be the variable, and the result of hashing every time is random. For example, h_i means i^{th} hashing. $h_1(x) = a$, $h_2(x) = b$. a b are random variables.

Chinese Version

- 1. 随机哈希函数首先是一个从一个含有多个hash functions的集合里随机挑选出来的方程, 使得 $U \rightarrow [m]$.
- 同样可以理解为一个哈希方程是让U里的每一个值作为哈希方程的自变量,每次对该自 变量映射的结果都是随机的。

宏观上来看,每一个值在经过随机哈希后,输出的值是随机的。

Cryptographic hash functions such as MD5, SHA-1, and SHA-256 are not *random* hash functions.

• Three things we care

- 1. Space (seed size) needed to represent h = b the size of S_h , cannot be too big
- 2. Time needed to calculate h(x) given $x \in U$. => The inner part of a lot of algorithms is hashing.
- 3. Properties of the random variable.

• Hash function types

Truly random

A hash function $h: U \to [m]$ is truly random if the variables h(x) for $x \in U$ are *independent* and *uniform*.

一个哈希方程想要 truly random,就得满足对于 $x \in U, h(x)$ 的结果每次都是 m 种可能,每次 hashing的结果互不影响(独立),且概率都一样,都是 $\frac{1}{m}$ (统一)。

<u>一共有|U|个输入,对于每一个输入,需要对应m个输出,此时一个输入需要</u> $\log_2 m$ <u>字节在计算机里,则一共需要</u> $|U|\log_2 m$ <u>个空间。</u>

Universal

A random hash function $h: U \to [m]$ is *universal* if, for all $x \neq y \in U$: $\Pr[h(x) = h(y)] \leq \frac{1}{m}$. => Hash to the same value.

C-approximately universal

A random hash function $h: U \to [m]$ is *c*-*approximately* universal if, for all $x \neq y \in U$: $\Pr[h(x) = h(y)] \leq \frac{c}{m}$.

Strongly universal

A random hash function $h: U \to [m]$ is *strongly universal* (a.k.a. 2-independent) if,

- 1. Each key is hashed *uniformly* into $[m] = i.e., \forall x \in U, q \in [m] : \Pr[h(x) = q] = \frac{1}{m}$.
- 2. Any two distinct keys hash independently.

Equivalently, if for all $x
eq y \in U$, and $q, r \in [m]: \Pr[h(x) = q \wedge h(y) = r] = rac{1}{m^2}.$

C-approximately strongly universal

A random hash function $h: U \to [m]$ is c-approximately strongly universal if,

- 1. Each key is hashed c-approximately uniformly into [m]. => i.e., $\forall x \in U, q \in [m]: \Pr[h(x) = q] \leq rac{c}{m}$
- 2. Any two distinct keys hash independently.

• Unordered sets / Hashing with chaining

Maintain a set S of at most n keys from some unordered universe U, under three operations.

```
INSERT(x, S) Insert key x into S.
```

DELETE(x, S) Delete key x from S.

MEMBER(x, S) Return $x \in S$.

We could use some form of balanced tree to store S, but they usually take $O(\log n)$ time operation, and we want each operation to run in expected constant time.

The worst case for both INSERT and DELETE is rotating $\log_2 n$ times. And the worst case of MEMBER operation is finding the leaf node. That's the reason why these three operations are all run in $O(\log n)$, while hashing can help us run these three operations in constant time. => *Hashing with Chaining*

• Hashing with Chaining => Universal Hashing

Hashing with chaining

Then, we store an array where the index of i in this array is a head of a linked list that contains all the elements in our sets that hashed to that element.

这三个方法所花费时间都和链表长度成正比。↓

Each operation take O(|L[h(x)]| + 1) time. And we need to prove the former part is a constant time.

• Theorem - 1

For $x \notin S$, $\mathbb{E}[|L[h(x)]|] \leq 1$. => 找不存在在集合里的x所花费的时间。某种程度上算是最差情况,如果最差情况也被bound住,那一般情况肯定在bound里。

Proof.

$$egin{aligned} \mathbb{E}[|L[h(x)]|] &= \mathbb{E}[|\{y \in S | h(y) = h(x)\}|] \Leftarrow By \ definition \ &= \mathbb{E}\left[\sum_{y \in S} [h(y) = h(x)]
ight] \Leftarrow Indicator \ variable \ &= \sum_{y \in S} \mathbb{E}\left[[h(y) = h(x)]
ight] \Leftarrow Linearity \ of \ expectation \ &= \sum_{y \in S} \Pr[h(y) = h(x)] \Leftrightarrow Expectation \ of \ indicator \ variable \ &\leq |S| rac{1}{m} \Leftarrow Since \ x \neq y \Rightarrow Universal \ &= rac{n}{m} \leq 1 \end{aligned}$$

This actually proves that hashing with chaining and expectation you use only constant time per operation.

• Signatures => Universal Hashing

Application: Signatures

Problem: Assign a unique "signature" to each $x \in S \subseteq U$, |S| = n. Solution: Use universal hash function $s: U \to [n^3]$. \rightarrow The probability of get the a colliciton above growth growth Then by a "union bound" Pr[$\exists (x, y) \subseteq S \mid s(x) = s(y)$] $\leq \sum_{\substack{\{x, y\} \subseteq S \\ \{x, y\} \subseteq S \\ y \in S \\ y$

• Multiply-mod-prime (2-approximately strongly universal)

It is the most classic but not the fastest. However, it is good enough for some applications.

Multiply-mod-prime

Let U = [u] and pick prime $p \ge u$. For any $a, b \in [p]$, and m < u, let $h_{a,b}^m : U \to [m]$ be

 $h_{a,b}^m(x) = ((ax + b) \bmod p) \bmod m$

Choose $a, b \in [p]$ independently and uniformly at random, and let $h(x) := h_{a,b}^m(x)$. Then $h: U \to [m]$ is a 2-approximately strongly universal hash function. Therefore $h_{a,b}^m(x) \in \mathbb{R}^m$ is a 2-approximately strongly universal hash function.

Multiply-shift _ low to work with

Let $U = [2^w]$ and $m = 2^\ell$. For any odd $a \in [2^w]$ define

$$h_{a}(x) := \left\lfloor \frac{(ax) \mod 2^{w}}{2^{w-\ell}} \right\rfloor \xrightarrow{\qquad} Computer put to work with power from the power for the power fow$$

• Multiply-shift (2-approximately universal) => Universal Hashing

Extremely cheaper to compute.

• Strong Multiply-shift => Strongly Universal Hashing

It is a strongly universal hash function.

• Coordinated sampling => Strongly Universal Hashing

Application: Coordinated sampling

Suppose we have a bunch of *agents* that each observe some set of events from some universe U. Let $A_i \subseteq U$ denote the set of events seen by agent i, and suppose $|A_i|$ is large so only a small sample $S_i \subseteq A_i$ is actually stored.

If each agent independently just samples a random subset of the seen events, there is very little chance that two agents that see an event make the same decision. \implies The samples are incomparable.

一堆代谜人观察凤-个U的一空\$月 每个(谜人爱福刘-雍弟许菜 //i,但|Ai||太久 硝収失会取 //i 星105祥本 Si

→ 七東自个代理人在京祥时是随机3站。 那么该个代理人看到同一个和件并决定的在 Si星的磁举是声。

Coordinated sampling means that all agents that see an event

- make the same decision about whether to store it. \Rightarrow Samples can be combined, i.e. $T \Rightarrow \mathbb{R}^{+}$
- $S_i \cup S_j$ is a sample of $A_i \cup A_j$
- $\blacktriangleright S_i \cap S_j \text{ is a sample of } A_i \cap A_j$

中的洞(谷阳有代望入發一个林復(一件中), 弊議 如果强足称作,都征在5注,不)融速 都成不能。

Let $h: U \to [m]$ be a strongly universal hash function, and let $t \in \{0, \ldots, m\}$. Send h and t to all the agents.

Application: Coordinated sampling

Let $h: U \to [m]$ be a strongly universal hash function, and let $t \in \{0, ..., m\}$. Send h and t to all the agents. Each agent samples $x \in U$ iff h(x) < t. Thus if an agent sees the set $A \subseteq U$, the set $S_{h,t}(A) := \{x \in A \mid h(x) < t\}$ is sampled. Note that $\blacktriangleright S_{h,t}(A_i) \cup S_{h,t}(A_j) = S_{h,t}(A_i \cup A_j)$ $\blacktriangleright S_{h,t}(A_i) \cap S_{h,t}(A_j) = S_{h,t}(A_i \cap A_j)$ Each $x \in A$ is sampled with probability $\Pr[h(x) < t] = \frac{t}{m}$. Why? Strong universality $\Longrightarrow h(x)$ uniform in [m]For any $A \subseteq U$, $\mathbb{E}[[S_{h,t}(A)]] = |A| \cdot \frac{t}{m}$. Thus we have an unbiased estimate $|A| \approx \frac{m}{t} \cdot |S_{h,t}(A)|$. How good is this estimate?

• Lemma

Lemma

Let $X = \sum_{a \in A} X_a$ where the X_a are pairwise independent 0–1 variables. Let $\mu = \mathbb{E}[X]$. Then $Var[X] \le \mu$, and for any q > 0,

$$\Pr[|X - \mu| \ge q\sqrt{\mu}] \le \frac{1}{q^2}$$

Proof (not curriculum). For $a \in A$ let $p_a = \Pr[X_a = 1]$. Then $p_a = \mathbb{E}[X_a]$ and

$$Var[X_{a}] = \mathbb{E}[(X_{a} - p_{a})^{2}] = (1 - p_{a})(0 - p_{a})^{2} + p_{a}(1 - p_{a})^{2}$$
$$= (p_{a}^{2} + p_{a}(1 - p_{a}))(1 - p_{a}) = p_{a}(1 - p_{a}) \le p_{a}$$
$$Var[X] = Var[\sum_{a \in A} X_{a}] = \sum_{a \in A} Var[X_{a}] \le \sum_{a \in A} p_{a} = \mu$$

Finally, since $\sigma_X = \sqrt{\operatorname{Var}[X]} \leq \sqrt{\mu}$ we get:

$$egin{aligned} & \mathsf{Pr}[|X-\mu| \geq q \sqrt{\mu}] \leq \mathsf{Pr}[|X-\mu| \geq q \sigma_X] \ & \leq rac{1}{q^2} \end{aligned}$$
 (Chebyshev's ineq.)

• How good is the unbiased estimate with Lemma?

Application: Coordinated sampling

Let's apply this lemma to the estimate $|A| \approx \frac{m}{t} |S_{h,t}(A)|$ from our coordinated sampling.

Let $X = |S_{h,t}(A)|$ and for $a \in A$ let $X_a = [h(a) < t]$. Then $X = \sum_{a \in A} X_a$ and for any $a, b \in A$, X_a and X_b are independent. Also, let $\mu = \mathbb{E}[X] = \frac{t}{m}|A|$.

Then for any q > 0,

$$\Pr\left[\left|\frac{m}{t}|S_{h,t}(A)| - |A|\right| \ge q\sqrt{\frac{m}{t}|A|}\right]$$
$$= \Pr\left[\left||S_{h,t}(A)| - \frac{t}{m}|A|\right| \ge q\sqrt{\frac{t}{m}|A|}\right]$$
$$= \Pr[|X - \mu| \ge q\sqrt{\mu}] \le \frac{1}{q^2}$$

We needed strong universality in two places for this to work. Where? *h* must be uniform to get unbiased estimate, and pairwise independent for the lemma. Todays topic was hashing, and we have covered

- What is a random hash function, and what properties do we want.
- Two applications of universal hashing unordered sets and signatures.
- Some concrete universal or strongly universal hash functions.
- An application of strongly universal hashing coordinated sampling.
- Next time: An ordered set data structure that is not comparison based, and an application of hash tables.