Note for Hashing

• Hash function => The function is chosen at random.

Given a typically large universe U of keys, and a positive integer m . A random hash function $i_1: U \to [m]$ is a randomly chosen function from $U \to [m]$.

My Understanding - 1

A random hash function is firstly a function that is selected from a set of hash functions randomly and it can map the keys from U to a range of numbers $0, \ldots, m-1$.

Equivalently, \Rightarrow For each x, the value at x is chosen at random.

It is a function h such that for each $x \in U$, $h(x) \in [m]$ is a random variable.

My Understanding - 2

A random hash function is let each key in U be the variable, and the result of hashing every time is random. For example, h_i means i^{th} hashing. $h_1(x) = a$, $h_2(x) = b$. a b are random variables.

Chinese Version

- 1. 随机哈希函数首先是一个从一个含有多个hash functions的集合里随机挑选出来的方程, 使得 $U \rightarrow [m]$.
- 2. 同样可以理解为一个哈希方程是让U里的每一个值作为哈希方程的自变量, 每次对该自 变量映射的结果都是随机的。

宏观上来看,每⼀个值在经过随机哈希后,输出的值是随机的。

Cryptographic hash functions such as MD5, SHA-1, and SHA-256 are not *random* hash functions.

Three things we care

- 1. Space (seed size) needed to represent $h \Rightarrow$ the size of S_h , cannot be too big
- 2. Time needed to calculate $h(x)$ given $x \in U$. \Rightarrow The inner part of a lot of algorithms is hashing.
- 3. Properties of the random variable.

Hash function types

Truly random

A hash function $h: U \to [m]$ is truly random if the variables $h(x)$ for $x \in U$ are *independent* and *uniform*.

一个哈希方程想要 truly random, 就得满足对于 $x \in U$, $h(x)$ 的结果每次都是 m 种可能, 每次 hashing的结果互不影响(独立),且概率都一样,都是 $\frac{1}{m}$ (统一)。

一共有 | U | 个输入, 对于每一个输入, 需要对应m个输出, 此时一个输入需要 log2 m 字节在计 算机里, 则一共需要 $|U|\log_2 m\triangle \hat{\mathfrak{B}}$ 间。

Universal

A random hash function $h: U \to [m]$ is **universal** if, for all $x \neq y \in U: Pr[h(x) = h(y)] \leq \frac{1}{m}$. => Hash to the same value.

C-approximately universal

A random hash function $h: U \to [m]$ is *c***-approximately** universal if, for all $x \neq y \in U : Pr[h(x) = h(y)] \leq \frac{c}{m}.$

Strongly universal

A random hash function $h: U \to [m]$ is **strongly universal** (a.k.a. 2-independent) if,

- 1. Each key is hashed *uniformly* into $[m]$. => i.e., $\forall x \in U, q \in [m] : Pr[h(x) = q] = \frac{1}{m}$.
- 2. Any two distinct keys hash *independently*.

Equivalently, if for all $x \neq y \in U$, and $q, r \in [m] : Pr[h(x) = q \wedge h(y) = r] = \frac{1}{m^2}$.

C-approximately strongly universal

A random hash function $h: U \to [m]$ is c-approximately strongly universal if,

- 1. Each key is hashed c-approximately uniformly into $[m]$. => i.e., $\forall x \in U, q \in [m]: \Pr[h(x) = q] \leq \frac{c}{m}$
- 2. Any two distinct keys hash independently.

Unordered sets / Hashing with chaining

Maintain a set S of at most n keys from some unordered universe U, under three operations.

```
INSERT(x, S) Insert key x into S.
```
DELETE (x, s) Delete key x from S.

MEMBER(x, S) Return $x \in S$.

We could use *some form of balanced tree to store S, but they usually take* $O(\log n)$ *time operation*, and we want each operation to *run in expected constant time*.

The worst case for both INSERT and DELETE is rotating $\log_2 n$ times. And the worst case of MEMBER operation is finding the leaf node. That's the reason why these three operations are all run in $O(\log n)$, while hashing can help us run these three operations in constant time. \Rightarrow *Hashing with Chaining*

Hashing with Chaining => *Universal Hashing*

Hashing with chaining

Then, we store an array where the index of i in this array is a head of a linked list that contains all the elements in our sets that hashed to that element.

这三个方法所花费时间都和链表长度成正比。↓

Each operation take $O(|L[h(x)||+1)$ time. And we need to prove the former part is a constant time.

Theorem - 1

For $x \notin S$, $\mathbb{E} |L[h(x)]| \leq 1$. => 找不存在在集合里的 x 所花费的时间。某种程度上算是最差 情况, 如果最差情况也被bound住, 那一般情况肯定在bound里。

Proof.

$$
\mathbb{E}[|L[h(x)]|] = \mathbb{E}[|\{y \in S | h(y) = h(x)\}|] \Leftarrow By \, definition
$$
\n
$$
= \mathbb{E}\left[\sum_{y \in S} [h(y) = h(x)]\right] \Leftarrow Indicator \, variable
$$
\n
$$
= \sum_{y \in S} \mathbb{E}[[h(y) = h(x)]] \Leftarrow Linearity \, of \, expectation
$$
\n
$$
= \sum_{y \in S} \Pr[h(y) = h(x)] \Leftarrow Expectation \, of \, indicator \, variable
$$
\n
$$
\leq |S| \frac{1}{m} \Leftarrow Since \, x \neq y \Rightarrow Universal
$$
\n
$$
= \frac{n}{m} \leq 1
$$

This actually proves that hashing with chaining and expectation you use only constant time per operation.

Signatures => *Universal Hashing*

Application: Signatures

Problem: Assign a unique "signature" to each $x \in S \subset U$, $|S|=n$. Solution: Use universal hash function $s: U \rightarrow [n^3] \rightarrow \text{The probability } f$ get the probability of get the collision down g your chosen signatures is very small.

Pr $[\exists(x,y) \subseteq S \mid s(x) = s(y)] \le \sum_{\{x,y\} \subseteq S} Pr[s(x) \stackrel{d}{=} s(y)]$. We have no chistoms,

Multiply-mod-prime (2-approximately strongly universal)

It is the most classic but not the fastest. However, it is good enough for some applications.

Multiply-mod-prime

Let $U = [u]$ and pick prime $p \ge u$. For any $a, b \in [p]$, and $m < u$, let $h_{a,b}^m : U \rightarrow [m]$ be

$$
h_{a,b}^m(x) = ((ax + b) \bmod p) \bmod m
$$

可以叹要危头与随和
and
hash
这没要该现自交代程序成都传递机运为 Choose $a, b \in [p]$ independently and uniformly at random, and
let $h(x) := h^m(x)$. let $h(x) := h_{a,b}^m(x)$. Then $h: U \rightarrow [m]$ is a 2-approximately strongly universal hash
function function. 神秘文

Multiply-shift I love to nort with

Let $U = [2^w]$ and $m = 2^{\ell}$. For any odd $a \in [2^w]$ define

\n $h_a(x) := \left[\frac{(ax) \mod 2^w}{2^{w-\ell}} \right]$ \n	\n $Gmputer$ \n <p>Prove to work with power Ax.</p> \n	
\n Choose odd $a \in [2^w]$ uniformly at random, and let\n	\n $h(x) := h_a(x).$ \n	\n $h(x) := h_a(x).$ \n
\n Then $h: U \rightarrow [m]$ is a 2-approximately universal hash function.\n	\n $\frac{1}{2} \frac{1}{3} \frac{1}{3}$	

Multiply-shift (2-approximately universal) => *Universal Hashing*

Extremely cheaper to compute.

Strong Multiply-shift => *Strongly Universal Hashing*

It is a strongly universal hash function.

Coordinated sampling => *Strongly Universal Hashing*

Application: Coordinated sampling

Suppose we have a bunch of agents that each observe some set of events from some universe U. Let $A_i \subset U$ denote the set of events seen by agent *i*, and suppose $|A_i|$ is large so only a small sample $S_i \subseteq A_i$ is actually stored.

If each agent independently just samples a random subset of the seen events, there is very little chance that two agents that see an event make the same decision. \implies The samples are incomparable.

Coordinated sampling means that all agents that see an event

- make the same decision about whether to store it. \Rightarrow Samples can be combined, i.e.
- \blacktriangleright $S_i \cup S_i$ is a sample of $A_i \cup A_i$
- \blacktriangleright $S_i \cap S_j$ is a sample of $A_i \cap A_j$

Ł

- Niki代理人观察 同-个ODO - 20即7
自介t(理人会有3M - 雍布여}朱 /Ni ,但Ai)太允
Ryue大会取 /N 地)の椅/本 S1

女峰,真个个物理人在桌样的是随机外记的 那么西个什丝人看到同一个和许开识点伤在 分星的磁条是卡

Let $h: U \rightarrow [m]$ be a strongly universal hash function, and let $t \in \{0, \ldots, m\}$. Send h and t to all the agents.

Application: Coordinated sampling

Let $h: U \rightarrow [m]$ be a strongly universal hash function, and let \mathcal{M} $t \in \{0, \ldots, m\}$. Send h and t to all the agents. Each agent samples $x \in U$ iff $h(x) < t$. Thus if an agent sees the set $A \subseteq U$, the set $S_{h,t}(A) := \{x \in A \mid h(x) < t\}$ is sampled. Note that $S_{h,t}(A_i) \cup S_{h,t}(A_i) = S_{h,t}(A_i \cup A_i)$ $\left[\begin{array}{cc} n(x) & -1 \end{array}\right]$ $S_{h,t}(A_i) \cap S_{h,t}(A_i) = S_{h,t}(A_i \cap A_i)$ Each $x \in A$ is sampled with probability $Pr[h(x)] < t$] = $\frac{t}{m}$.
Why? Strong universality $\implies h(x)$ uniform in $[m]$ E 『年年第23大小】= 14]· 荒 For any $A \subseteq U$, $\mathbb{E}[\overline{S}_{h,t}(A)] = |A| \cdot \frac{t}{m}$. Thus we have an unbiased estimate $|A| \approx \frac{m}{t} \cdot |S_{h,t}(A)|$. How good is this estimate?

• Lemma

Lemma

Let $X = \sum_{a \in A} X_a$ where the X_a are pairwise independent 0–1 variables.
Let $\mu = \mathbb{E}[X]$. Then $\text{Var}[X] \leq \mu$, and for any $q > 0$,

$$
\Pr[|X - \mu| \ge q\sqrt{\mu}] \le \frac{1}{q^2}
$$

Proof (not curriculum). For $a \in A$ let $p_a = Pr[X_a = 1]$. Then $p_a = \mathbb{E}[X_a]$ and

$$
\begin{aligned} \n\text{Var}[X_a] &= \mathbb{E}[(X_a - p_a)^2] = (1 - p_a)(0 - p_a)^2 + p_a(1 - p_a)^2 \\ \n&= (p_a^2 + p_a(1 - p_a))(1 - p_a) = p_a(1 - p_a) \le p_a \\ \n\text{Var}[X] &= \text{Var}\Big[\sum_{a \in A} X_a\Big] = \sum_{a \in A} \text{Var}[X_a] \le \sum_{a \in A} p_a = \mu \n\end{aligned}
$$

Finally, since $\sigma_X = \sqrt{\text{Var}[X]} \leq \sqrt{\mu}$ we get:

$$
\Pr[|X - \mu| \geq q\sqrt{\mu}] \leq \Pr[|X - \mu| \geq q\sigma_X]
$$

$$
\leq \frac{1}{q^2}
$$
 (Chebyshev's ineq.)

• How good is the unbiased estimate with Lemma?

Application: Coordinated sampling

Let's apply this lemma to the estimate $|A| \approx \frac{m}{t} |S_{h,t}(A)|$ from our coordinated sampling.

Let $X = |S_{h,t}(A)|$ and for $a \in A$ let $X_a = [h(a) < t]$. Then $X = \sum_{a \in A} X_a$ and for any $a, b \in A$, X_a and X_b are independent. Also, let $\mu = \mathbb{E}[X] = \frac{t}{m}|A|$.

Then for any $q > 0$,

$$
\Pr\left[\left|\frac{m}{t}|S_{h,t}(A)| - |A|\right| \ge q\sqrt{\frac{m}{t}|A|}\right]
$$

=
$$
\Pr\left[\left| |S_{h,t}(A)| - \frac{t}{m}|A| \right| \ge q\sqrt{\frac{t}{m}|A|}\right]
$$

=
$$
\Pr[|X - \mu| \ge q\sqrt{\mu}] \le \frac{1}{q^2}
$$

We needed strong universality in two places for this to work. Where? h must be uniform to get unbiased estimate, and pairwise independent for the lemma.

Todays topic was hashing, and we have covered

- What is a random hash function, and what properties do we want.
- \blacktriangleright Two applications of universal hashing $-$ unordered sets and signatures.
- Some concrete universal or strongly universal hash functions.
- An application of strongly universal hashing \cdot coordinated sampling.
- Next time: An ordered set data structure that is not comparison based, and an application of hash tables.