
Note for Max-flow  

Recap

Part 1  

Max-flow is an algorithm that we can solve in polynomial time => It is fast and good.
What is a max-flow problem?

Before that, we are about to know what is the flow network.

What is the flow network?

Draw a picture

Basically, we have a starting point or a source called S, and an end point T called sink. There are some cities each vertex 
including s and t. => s and t

transport goods

(1) We can imagine that we are transporting goods from s here to t, 

(2) but it is not allowed to accumulate goods in these intermediate cities. => So, whatever goes into a city or in vertex has 
to go out again except for S & T.

Flow Conservation

We can also think of it as a system of water pipes. So, you want to send as much water from S to T as possible. But there is a 
limit. => In addition, to have what is called flow conservation, whatever goes in has to go out in the above four nodes. 

Capacities

We also have these numbers on the edges of the graph. And these numbers are called capacities.

For instance,  means that we can send in most seven units of whatever we want to send per unit of time. => Litter of water 
or Number of trucks per day.



Application

The max-flow problem can be used as a black box inside algorithms for other problems. So if we can solve the max-flow 
problem, we can use an algorithm for that to help solve other problems.

Formally Definition of Flow Network => , no self-loops and no antiparallel edges.

A flow network consists of a directed graph , a source , a sink , and a capacity 
 such that , and if  then .

Note: C. It maps vertex pairs to real numbers.  Capacities can never be negative. If we have a vertex pair that is not an edge of 
the graph, then the capacity has to be 0.

Now we have a flow network but what we want to find in a flow network is a flow.

Special requirement for 

Before we continue, we should declare one thing.

We require that  has no self-loops and no anti-parallel edges. 

Self-loop means an edge with the endpoints equal to each other. So it connects a vertex to itself. 

Antiparallel edges mean that you have a pair of distinct vertices that have edges in opposite directions. => Solution is to add an 
extra vertex.

Flow

Definition of Flow => A flow is a function takes pairs of vertices maps them to real number the flow values. And it should 
satisfy the following constraints.

A flow in  is a  such that,

1.  and this is Capacity Constraints.

2.  and this is Flow 
Conservation.

Why it is equivalent?

We have zero capacity on all pairs that are not connect all ordered pairs that don't correspond to an edge. So whether we 
sum over all the edges makes no difference because there is no contribution from this u, v is not in edge and the same 
on the right side.

If we have these two types of requirements satisfied, then we call this function of flow.

Quality of our flow

However, in the example, we want to transport as much as possible from . So we need to define something that 
expresses how good our flow is.

The value  of  is defined as  => (total flow leaving s - total flow entering s).

What is Max-flow?

A max-flow is a flow of maximum value. We want to maximize the equation above.

Candidate flow and the 



The first one is not a flow as it violates the capacity constraint. The second one is not a flow as it violates the flow 
conservation where the right bottom node, 7 in and 6 out.

The third one is a flow with , as the source sends out 7 units, while there is nothing in the source. The fourth one is a 
flow with .

How do we find such a maximum flow?

To solve this question, we need to be familiar with the following concepts first.

Residual Capacity => Why do we need the special requirement above?

Given flow  in , the residual capacity  is defined as,

Residual Network

The residual network  where .

 is a flow network with a capacity function .  is allowed to have antiparallel edges.

Practice



Then, let's go back how to find a maximum flow.

Ford-Fulkerson(G) => Informal

1.  => It initializes the flow to be 0 everywhere.

2. while there is an augmenting path  in 

find a max flow  along . (We need to find the bottleneck, the below example is )

 (  is augmented with )

3. return 

Here we only call it a method instead of an algorithm is that we don't specify how we pick this augmenting path.

Right now, let's define this augmentation symbol.

Augmented Flow

Given flow  in  and given flow  in . =>  is what we called  before. => But why do we need to minus the flow that 
we send in the opposite direction?

Then the augmented flow  is,

Augmented Practice

Max-flow-min-cut Theorem

Why the Ford-Fulkerson can find the max-flow? There is a theorem which is called max-flow-min-cut theorem.



Before we state the theorem, there are still some definitions.

Cut

A cut is a partition of  into subsets  and  such that  and .

Net Flow => The total flow going from  minus the total flow going from .

Given a cut , we define the net flow across  as .

Capacity of the Cut => We only look at the edges going from  and add the capacities.

The capacity  is . 

Lemma 1

 is a flow in  of value .

Proof

How do we show this is a flow first? => Capacity Constraints

Let . Then,

Then, => Flow Conservation

Let . Then,

The first term can be canceled as they represent the flow going out from  and going in to . => Flow Conservation 



Similarly, the other two are exactly reversed. The total amount of  flow going into .

Therefore, everything got canceled. 

Lemma 2

Given flow  in  and given any cut , . => The net flow going out of the source is equal to the net flow 
going into the sink. (consider the ).

Proof

The first term is 0 as when  switched their roles in the sum, we are subtracting that term again. The first term can be 
understood that the sum of the edge that both endpoints are in .

Simplify

We have flow conservation in . The net flow going out of  is  except possibly when  is equal to . So, the sum is the 
amount of flow going out of the source minus the amount of flow going into the source. And that is equal to the value of the 
flow.



Corollary 1

For any flow  and any cut . => The amount of flow that can go from  (the value of the flow) is upper 
bounded by the capacity of the edges that go from  to , it is intuitively correct as the capacity is a bottleneck for how much 
flow you can send from .

Proof

Now, let us state the max-flow-min-cut theorem.

Max-flow-min-cut Theorem

First, let us illustrate the corollary that we have proved above.

Illustrate the Corollary

1. Put in all possible flow values that you can have in your graph.
2. Put in all the possible capacities of cuts that you can have.

The corollary is saying that all the XS are to the left of all the circles. No flow value can be larger than any capacity of a cut.

While the max-flow-min-cut theorem says that if you take the largest flow value here and you take the smallest capacity of the cut, 
they actually meet.

Statement

Let  be a flow in . Then the following 3 statements are equivalent.

1.  is a max flow
2. there is no augmenting path (in )
3.  cut  such that the value of the flow 

Why do we show interest in this theorem? What are the relationships between the FF method?



If Ford-Fulkerson terminates that means there's no augmenting path, then the max-flow-min-cut theorem tells  is a 
max flow.

The big question is, does FF always terminate?

Part 2  

Proof of Theorem

 Contradiction + Lemma 1

Assume for contradiction that,  is a max flow and that there is an augmenting path  (in ).

Then by Lemma 1,  is a flow in  of value . This means,  has a larger value.

However,  is a max flow and that is contradicted by the assumption.

Therefore, .

 Construct cut + Single Edge

Let . So  is simply the vertices that you can reach from the source in the 
residual network by some path. 在残存⽹络中，集合S中的任意⼀个点到原点都有路径。 Let . 

Now we need to argue that this is a cut.

It is clearly a partition of the vertex set, but then we needed the source to be in  and the sink to be in .

Is there a path is as reachable from  in  that clearly? => It just takes the empty path, so it clearly  belongs to .

What about the sink being in the ? =>  because otherwise  would be reachable from  in , contradicting (2) => 
Augmenting path.

Therefore, the cut has been constructed. Then, we need to argue why .

Assume . Then . Above.



Now assume . We take the same case in the opposite direction. Therefore, .

Otherwise, v is reachable from s, which means .

By Lemma 2, 

 Corollary 1

Let  be any flow in . By Corollary 1,

Therefore, .

Running Time

How fast of FF method?

In general, F.F. does not terminate. => Capacities need to be irrational numbers for this to occur, otherwise, it always 
terminates.

Assume integer capacities. Then F.F. has a running time  where  is a max flow.

Why it is true?

If all the capacities are integers, we know that F.F increases the value of the flow by at least 1 in each step. Therefore, the 
number of iterations is bounded by the value of the max flow. And in each step, we need to find an augmenting path and you 
can do any linear time search procedure to find a path from .

找增⼴路径的时间是线性的，边集合的⼤⼩。每次找到⼀个路径⾄少增加1，最多找到最⼤流的值个。

Is this fast or slow? => It depends on the value of the , and also the .

Example

Bad choice is every time, go through the middle path, then increment by 1 every time.



Good choice is not selecting the middle path. Only takes 2 steps.

Edmonds-Karp(G) => E.K. No matter about the capacities look like, including irrational numbers.

Then, we introduce an algorithm which is called Edmonds-Karp. It is an implementation that when selecting a path always 
chooses the shortest path, for example, the algorithm will select the length of the path equal to 2 instead of the bad one with 
3.

1.  => Initialize flow to be .

2. while  augmenting path

let  be a shortest such path

3. return 

Theorem 1

The number of iterations of E.K. is .

Proof



Then, let's prove in each step, the #iteration is bounded by .

But right now, we need to show that we cannot keep the distance the same for more than .

Consider consecutive flows  found by E.K. such that the .

For  let .

A forward edge of  is an edge  in  such that ,  for some . A back edge of  is the reverse of a 
forward edge.

Forward edges are in blue, while  is not the forward edge as the distance from , .

Claim 1

For , E.K. finds an augmenting path in  consisting only of forward edges of .



Claim 1 implies that  since at least one forward edge disappears in each iteration. (as in each step, we are removing 
at least 1 blue edge from the . While the number of blue edges is smaller than the number of edges. Remove at least 1 
forward edge because we can always remove the bottleneck forward edge by replacing it to be the back edge in each step.)

Proof

It is clear for  as we can only use forward edges because it's the shortest path, we have to go one step forward each time.

 is obtained from  by removing forward edges and adding back edges since  . Thus Claim 1 true 
for .

Claim 2 

Proof

 is obtained from  by removing forward edges and inserting back edges. Thus Claim 2 holds.

Then, claim 1 and 2 can imply the proof above. => Theorem 1.

Corollary 2

E.K. can be implemented to run in . => BFS.

Integrality Theorem

Given integer capacities, F.F. will find an integer-value flow , with  an integer.
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