NPC

Overview for today

Reducibility => Show that one problem is essentially at least as hard as another problem.

- *Definition of a problem*
- 1. Consider a set I of *instances* and a set S of *solutions*.
- 2. An abstract *problem* is *a binary relation between I* and *S*, i.e., a subset of $I \times S$.

A solution is a sequence of vertices forming a shortest s to t path.

Decision problems

Problems with $1/0$ (yes/no) answers. Hence, $S = \{0, 1\}.$

the algorithm should
output either 91
yes/m, instuadof saying it is

Example of a decision problem: $PATH$.

 $PATH(\langle G, u, v, k \rangle) = 1$ if there is a $u - to - v$ path in G with at most k edges. Otherwise, $PATH(*G*, u, v, k>) = 0.$

We can regard a decision problem as a mapping from instances to $S = \{0, 1\}$.

$$
\langle \hat{\tau}, u, v, k \rangle \rightarrow \{0, 1\}
$$

Instances with solution 1 are called *yes*-instances. Instances with solution 0 are called *no*instances.

Optimization problems (like SHORTEST-PATH) can usually be turned into decision problems (like PATH).

\n
$$
\text{Optimization} \rightarrow \text{Deci's on problem}
$$
\n

\n\n $\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \binom{n}{j} \binom{n}{j}}{\sum_{i=1}^{n} \binom{n}{j} \binom{n}{j}} \binom{n}{j} \binom{n}{j}} \left(\frac{n}{j}\right)^{n} \binom{n}{j} \binom{n}{j$

世界自3-1尊沃(p^TH),我们可以 从ドー川ー一社ら地界57、31 通知 S=> → 最短PATA 持续 run PATA ÅNins≈lin⊧ , 但只能找到distanc可

Polynomial-time solvable problems => *Class of P*

能在多项式时间内解决的。

- 1. We assume that *instances* of a problem are *encoded as binary strings*.
- 2. An algorithm **solves** a problem in time $O(T(n))$ if for any instance of length n, the algorithm returns a solution (0 or 1) in time $O(T(n))$.

3. If $T(n) = O(n^k)$ for some constant k, the problem is *polynomial-time solvable*.

Suppose we define P as the class of polynomial-time solvable problems.

What is missing in this definition? Which encoding of the input is assumed? We haven to spect that how we encode the input?
记录第, 国力我们的运行情问和决定的时间 向小队和以下次开放了切印花个

In the lecture, we pick binary encoding, giving input size $n = |\lg k| + 1$.

In particular, numbers are represented in *binary*, not unary.

We use the notation $\langle x \rangle$ to refer to a chosen encoding of instance x of a problem. \Rightarrow Already converted to a binary string.

Encodings are always *binary* strings in our setting.

Languages

Alphabet: finite set \sum of symbols.

Language L over \sum : a set of strings of symbols from \sum .

Example: $\sum = \{a, b, c\}$ and $L = \{a, ba, cab, bbac, \dots\}.$

We also allow an empty string and denote it by ϵ . => $\epsilon \in L$

The empty language is denoted \emptyset (It does not contain ϵ).

 \sum^* denotes the language of all strings (including ϵ).

Languages and decision problems

Recall that we *encode instances of a decision problem as binary strings*.

Also recall that we may *view a decision problem as a mapping* $Q(x)$ *from instances x to* $\Sigma = \{0, 1\}.$

Q can be specified by the binary strings that encode yes-instances of the problem. => If you just specify which strings are yes-instances, then you have also specified Q .

\n- Thus, we can view Q as a language L:
\n- $$
L = \{x \in \Sigma^* | Q(x) = 1\}.
$$
\nThe language L consist of all strings X

\nthat Q maps to I

\n
	\n- $\overrightarrow{AB} : L^2 \cup \mathcal{H} \cup \mathcal{H}$
	\n- $\overrightarrow{AB} : L^2 \cup \mathcal{H} \cup \mathcal{H}$
	\n\nIM IN L 72 M/AD 195 - Intamus

My Understanding: Q can encode x and maps it into 1. L contains all the yes-instances.

Language accepted/decided by an algorithm

Let A be an algorithm for a decision problem and denote by $A(x) \in \{0, 1\}$ its output (if any) on input x .

A accepts a string x if $A(x) = 1$, *A rejects* a string x if $A(x) = 0$.

There may be strings that A neither accepts nor rejects. \Rightarrow A loop forever.

The language *accepted* by A is,

$$
L=\{x\in\{0,1\}^*|A(x)=1\}
$$

Suppose in addition that all strings not in L are rejected by A, i.e., $A(x) = 0$ for all $x \in \{0,1\}^* \setminus L.$

Then we say that L is decided by A .

Deciding a language is stronger than accepting it.

Accepting/deciding in polynomial time

- Language L is accepted by an algorithm A in polynomial time if A accepts L and runs in polynomial time on strings from \overline{L} .
- L is decided by A in polynomial time if A decides L and runs in polynomial time on all strings V Veguine that it terminates in poly time.

Example: $PATH$ can both be accepted and decided in polynomial time.

Define the complexity class P:

• *P* in terms of acceptance

Lemma

But for the other direction, we need to show that if L is accepted by a polynomial-time algorithm A, it is decided by a polynomial-time algorithm Δt .

P in terms of acceptance

- Need to show: if L is accepted by a polynomial-time algorithm A , it is decided by a polynomial-time algorithm A' .
- Since A accepts L, it runs in at most cn^k steps before halting on any n-length string from L , where c and k are constants.
- Now let s be any string in Σ^* .
- A' simulates A with input s for at most $c|s|^k$ steps.
- If the simulation has not halted after this many steps, A' halts and outputs 0.
- Otherwise, A' outputs whatever A outputs.
- A' decides L and runs in polynomial time.

Verfication

Let L be a language.

We might not have an efficient algorithm that accepts L .

Consider an algorithm A taking two parameters, $x, c \in \sum^* =$ If you need to solve an assignment, it might be simpler to verify the solution of your fellow students and having to solve the assignment from scratch. You can think of c is a candidate solution that you are given with the problem instance.

Instead of trying to *find* a solution to x (which may take long time), A instead **verifies** that c is a solution to x .

HAM-CYCLE problem

An undirected graph G is hamiltonian if it contains a simple cycle containing every vertex of G . \Rightarrow A cycle visits every vertex exactly once in a graph. Cannot visit the same vertex more than once.

We define:

$$
HAM-CYCLE = \{ < G > |G\ is\ Hamiltonian\}.
$$

It is very hard can be decided in polynomial time, however, it is easy to show that $HAM - CYCLE$ can be verified in polynomial time.

 $A_{ham}(*G*>, *C*>) = 0.$

 $A_{ham}(*G*>, *C*>) = 1.$

Designing A_{ham} to run in polynomial time is easy. Hence, we can verify $HAM - CYCLE$ in polynomial time.

Verifying a language

A *verification algorithm* is an algorithm A taking two arguments, $x, y \in \{0, 1\}^*$, where y is the *certificate.* $x \rightarrow instances, y \rightarrow certificance.$

A verifies a string x if there is a certificate y such that $A(x, y) = 1$.

The language *verified* by \vec{A} is,

$$
L = \{x \in \{0,1\}^* | there \ is \ a \ y \in \{0,1\}^* \ such \ that \ A(x,y) = 1\}
$$

The complexity class NP

NP is the class of languages that can be *verified* in polynomial time.

More precisely, $L \in NP$ if and only if there is a polynomial-time *verification* algorithm A and a constant c such that

$$
L = \{x \in \{0,1\}^* | \text{there is a } y \in \{0,1\}^* \text{ with } |y| = O(|x|^c) \text{ such that } A(x,y) = 1 \}.
$$

have to be short.

- We have seen that $HAM-CYCLE \in NP$.
- We have seen that $HAM-CYCLE \in NP$.
If $L \in P$ then $L \in NP$. Why? $\rightarrow WMy$ P is contained in NP ?

之叶以赵川是因轨题第头有/叩开轻拨钟3项式ì降经。

"址||吴有一个算法A/>>这 し(乞项<code>イ\/A></code> 那么筑ile这个w她在多项代内。
直接江八去鼻不用ceruficareや散 在气吸入内,

NP-complete problems

There are problems in NP that are "*the most difficult*" in that class.

If any one of them can be *solved* in polynomial time then *every problem in NP can be solved in polynomial time*.

These difficult problems are called *NP-complete*.

- HAM-CYCLE is NP-complete.
- Hence, if we could show $HAM-CYCLE \in P$ then $P = NP$.
- *Polynomial-time Reducibility*

If $L_1 \leq_P L_2$ then L_1 is in a sense no harder to solve than L_2 .

辛y ve /up 闵超4吖有问题 - 择op6

L is *NP-hard* if property 2 holds (and possibly not property 1).

- Circuit satisfiability
- A boolean combinational circuit consists of a collection of logic \bullet gates connected together with wires.
- The logic gates allowed are AND, OR, and NOT. \bullet
- Each wire has a value which is either 0 or 1. \bullet
- Some wires are specified by input values and the rest by the logic gates.
- Other wires specify output values.
- We can represent a circuit as an acyclic graph.
- Given a boolean combinational circuit C with one output wire.
- A satisfying assignment for C is an assignment of values to input wires of C causing an output of 1 .
- The circuit satisfiability problem CIRCUIT-SAT is to decide if a \bullet given circuit has a satisfying assignment:

CIRCUIT-SAT = $\{ \langle C \rangle | C$ is a satisfiable boolean

combinational circuit}.

- We will show that CIRCUIT-SAT is NP-complete.
- 1. Showing $CIRCUIT-SAT \in NP$
	- We construct algorithm \overline{A} with inputs x and y .
	- A checks that x represents a boolean combinational circuit C with one output wire and that y represents an assignment of truth values to the wires of C .
	- If so, A checks that y represents a valid truth assignment. \bullet
	- If so, A checks that the single output is 1 .
	- If this is the case, A returns 1; otherwise it returns 0.
	- A is a verification algorithm for CIRCUIT-SAT and can easily be \bullet made to run in polynomial time.
	- Thus, CIRCUIT-SAT \in NP.
- 2. Showing that $CIRCUIT SAT$ is NP-hard
- Consider any language $L \in \text{NP}$.
- We need to give a polynomial-time reduction from L to CIRCUIT-SAT.
- In other words, we need to find a polynomial-time algorithm A computing a function $f: \{0,1\}^* \to \{0,1\}^*$ such that

Showing that CIRCUIT-SAT is NP-hard

Since $L \in \text{NP}$, there is a polynomial-time algorithm A such that

$$
L = \{x \in \{0, 1\}^* | \text{there is a } y \in \{0, 1\}^* \text{ with}
$$

$$
|y| = O(|x|^c) \text{ such that } A(x, y) = 1\}
$$

Given string x, f outputs a circuit $C(x)$ with $O(|x|^c)$ input wires.

We ensure that $C(x)$ has a satisfying assignment of its input wires if and only if $A(x, y) = 1$ for some y with $|y| = O(|x|^c)$.

This way,

 Λ (x,y)=

 $\neg x \in L \Leftrightarrow f(x) = \langle C(x) \rangle \in \text{CIRCUIT-SAT}.$

- Each y with $|y| = O(|x|^c)$ defines an input to $C(x)$.
- Intuition: Circuit $C(x)$ implements algorithm A on input (x, y) \bullet with x fixed.
- We ensure that $A(x, y) = 1$ if and only if y is a satisfying assignment.
- There is a constant k such that the worst-case running time $T(n)$ of A on an input (x, y) is $O(n^k)$ where $n = |x|$.
- The machine executing A has a certain *configuration* at each time step.
- The configuration gives a complete specification of the current memory, CPU state, and so on.
- When executing A on (x, y) , the machine goes through a series of configurations $c_0, c_1, \ldots, c_{T(n)}$ (assume for simplicity that A runs for exactly $T(n)$ steps on (x, y)).
- Configuration c_0 specifies inputs x and y and the program code for A .
- One bit of the last configuration $c_{T(n)}$ specifies the $0/1$ -output of А.
- Let M be the circuit implementing the hardware of the machine.
- We feed the initial configuration c_0 as input wires to M.
- M performs a single step of A and the new configuration c_1 is stored on output wires.
- These output wires feed into M which makes another step, forming c_2 as output, and so on.
- In total, we glue $T(n)$ copies of M together.
- This gives a BIG circuit representing the entire execution of A on input (x, y) .
- The size of the circuit is still polynomial in n , however.
	- We modify the circuit by hard-wiring part of the input to that specified by binary string x and so that the only output wire is that corresponding to the output of A .
	- The circuit now only takes inputs y .
- The resulting circuit $C(x)$ has a satisfying assignment y if and only if $A(x, y) = 1$.
- $C(x)$ can be computed from x in time polynomial in |x|.
- This shows that $L \leq_P CIRCUIT-SAT$.
- Thus. CIRCUIT-SAT is NP-hard.
- Since also CIRCUIT-SAT \in NP, it follows that CIRCUIT-SAT is NP-complete.

• Decision problems and languages

- A decision problem Q consists of yes-instances and no-instances.
- Example, $Q = HAM-CYCLE: \langle G \rangle$ is a yes-instance if G contains a simple cycle containing all vertices of G ; otherwise $\langle G \rangle$ is a no-instance.
- We can view a problem Q as a mapping of yes-instances to 1 and no-instances to 0.
- We can also view Q as a language L :

$$
L = \{x \in \{0,1\}^* | Q(x) = 1\}.
$$

- A verification algorithm is an algorithm A taking two arguments, $x, y \in \{0, 1\}^*$, where y is the certificate.
- A verifies a string x if there is a certificate y such that $A(x, y) = 1.$

• The language
$$
\sqrt{\log A}
$$
 is

$$
L = \{x \in \{0, 1\}^* | \text{there is a } y \in \{0, 1\}^* \text{ such} \\ \text{that } A(x, y) = 1 \}.
$$

The complexity class NP

- NP is the class of languages that can be verified in polynomial time.
- In other words, $L \in \text{NP}$ if and only if there is a polynomial-time verification algorithm A and a constant c such that

$$
L = \{x \in \{0, 1\}^* | \text{there is a } y \in \{0, 1\}^* \text{ with } |y| = O(|x|^c) \text{ such that } A(x, y) = 1 \}.
$$

- We saw that $P \subseteq NP$.
- Big open problem: is $P = NP$?

Reducibility

- Language L is NP-complete if
	- 1. $L \in \mathsf{NP}$ and
	- 2. $L' \leq_P L$ for every $L' \in \mathsf{NP}$.
- L is NP-hard if L satisfies property 2 (and possibly not property 1).
- We saw that if any language of NPC belongs to P then $P = NP$.
- We also showed that CIRCUIT-SAT is NP-complete.
- NP-completeness of other problems via reduction

SAT problem

- We can easily make A run in polynomial time.
- Thus, $SAT \in NP$.

Showing CIRCUIT-SAT \leq_P **SAT**

- Given a circuit C, we transform it into a boolean function ϕ as \bullet follows.
- Associate a variable x_i with each wire of C; let x_m be the output \bullet xi -> i^th wire wire variable.
- We can view each gate of C as a function mapping the values on
subformula for each gate
its input wires to the value on its output wire. \bullet
- Construct a sub-formula for each such function.
- **Example:**

Sub-formula for gate: $x_7 \leftrightarrow (x_1 \land x_2 \land x_4)$

- If ϕ_1, \ldots, ϕ_k are the sub-formulas, we define ϕ to be $x_m \wedge \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_k$.
- Example:

$$
\phi = x_{10} \land (x_4 \leftrightarrow \neg x_3) \land (x_5 \leftrightarrow (x_1 \lor x_2))
$$

$$
\land (x_6 \leftrightarrow \neg x_4) \land (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))
$$

$$
\land (x_8 \leftrightarrow (x_5 \lor x_6)) \land (x_9 \leftrightarrow (x_6 \lor x_7))
$$

$$
\land (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).
$$

- ϕ can be constructed in polynomial time.
- In words, ϕ is stating that the output wire is 1 and that each gate behaves as it is supposed to.
- Thus, C is satisfiable if and only if ϕ is satisfiable:

$$
\langle C \rangle \in \texttt{CIRCUIT-SAT} \Leftrightarrow \langle \phi \rangle \in \texttt{SAT}.
$$

The formula we constructed is equivalent to

with

- We have now shown that SAT is NP-complete. the druit we started
- \bullet 3 $CNF-SAT$
- $SAT \leq_p 3-CNF-SAT.$
	- \bullet SUBSET SUM
- $3-CNF-SAT <_P$ SUBSET SUM.
	- \bullet CLIQUE

3-CNF-SAT <p CLIQUE. => 构造 vertex triple 图。正过来是选1, 连起来发现是个 CLIQUE。反过来是找一个 CLIQUE 然后令其分别为 1, 未知的点随便选, 发现 $\phi = 1$ 。

 \bullet VERTEX - COVER

 $CLIQUE \leq_P VERTEX-COVER. =>$ 找补集。

• $HAM-CYCLE <_P TSP$

完全图。

All the proof refers to the *Slides - NPC2*.