
NPC

Overview for today

Reducibility => Show that one problem is essentially at least as hard as another problem.

Definition of a problem

1. Consider a set of instances and a set of solutions.

2. An abstract problem is a binary relation between and , i.e., a subset of .

For , an instance is a triple .

A solution is a sequence of vertices forming a shortest to path.

Decision problems

Problems with (yes/no) answers. Hence, .

Example of a decision problem: .

 if there is a path in with at most edges. Otherwise,
.

We can regard a decision problem as a mapping from instances to .

Instances with solution 1 are called yes-instances. Instances with solution 0 are called no-
instances.

Optimization problems (like SHORTEST-PATH) can usually be turned into decision
problems (like PATH).

Polynomial-time solvable problems => Class of P

能在多项式时间内解决的。

1. We assume that instances of a problem are encoded as binary strings.

2. An algorithm solves a problem in time if for any instance of length , the
algorithm returns a solution (or) in time .

3. If for some constant , the problem is polynomial-time solvable.

Suppose we define as the class of polynomial-time solvable problems.

In the lecture, we pick binary encoding, giving input size .

In particular, numbers are represented in binary, not unary.

We use the notation to refer to a chosen encoding of instance of a problem. => Already
converted to a binary string.

Encodings are always binary strings in our setting.

Languages

Alphabet: finite set of symbols.

Language L over : a set of strings of symbols from .

Example: and .

We also allow an empty string and denote it by . =>

The empty language is denoted (It does not contain).

 denotes the language of all strings (including).

Languages and decision problems

Recall that we encode instances of a decision problem as binary strings.

Also recall that we may view a decision problem as a mapping from instances to
.

 can be specified by the binary strings that encode yes-instances of the problem. => If you
just specify which strings are yes-instances, then you have also specified .

My Understanding: Q can encode x and maps it into 1. L contains all the yes-instances.

Language accepted/decided by an algorithm

Let be an algorithm for a decision problem and denote by its output (if any) on
input .

 accepts a string if , rejects a string if .

There may be strings that neither accepts nor rejects. => loop forever.

The language accepted by A is,

Suppose in addition that all strings not in are rejected by , i.e., for all
.

Then we say that is decided by .

Deciding a language is stronger than accepting it.

Example: can both be accepted and decided in polynomial time.

Define the complexity class P:

 in terms of acceptance

Lemma

But for the other direction, we need to show that if is accepted by a polynomial-time algorithm
, it is decided by a polynomial-time algorithm .

Verfication

Let be a language.

We might not have an efficient algorithm that accepts .

Consider an algorithm taking two parameters, . => If you need to solve an
assignment, it might be simpler to verify the solution of your fellow students and having to solve
the assignment from scratch. You can think of is a candidate solution that you are given with
the problem instance.

Instead of trying to find a solution to (which may take long time), instead verifies that is a
solution to .

HAM-CYCLE problem

An undirected graph is hamiltonian if it contains a simple cycle containing every vertex of .
=> A cycle visits every vertex exactly once in a graph. Cannot visit the same vertex more than
once.

We define:

It is very hard can be decided in polynomial time, however, it is easy to show that
 can be verified in polynomial time.

.

.

Designing to run in polynomial time is easy. Hence, we can verify in
polynomial time.

Verifying a language

A verification algorithm is an algorithm taking two arguments, , where is the
certificate. .

 verifies a string if there is a certificate such that .

The language verified by is,

The complexity class NP

NP is the class of languages that can be verified in polynomial time.

More precisely, if and only if there is a polynomial-time verification algorithm and a
constant such that

NP-complete problems

There are problems in NP that are “the most difficult” in that class.

If any one of them can be solved in polynomial time then every problem in NP can be solved in
polynomial time.

These difficult problems are called NP-complete.

Polynomial-time Reducibility

If then is in a sense no harder to solve than .

NP-complete languages

 is NP-hard if property holds (and possibly not property).

Circuit satisfiability

1. Showing

2. Showing that is NP-hard

Decision problems and languages

NP-completeness of other problems via reduction

SAT problem

.

.

. => 构造 vertex triple 图。正过来是选1，连起来发现是个
CLIQUE。反过来是找⼀个 CLIQUE 然后令其分别为 1，未知的点随便选，发现 。

. => 找补集。

完全图。

All the proof refers to the Slides - NPC2.

	NPC

