
NPC  

Overview for today

Reducibility => Show that one problem is essentially at least as hard as another problem.



Definition of a problem

1. Consider a set  of instances and a set  of solutions.

2. An abstract problem is a binary relation between  and , i.e., a subset of .

For , an instance is a triple .

A solution is a sequence of vertices forming a shortest  to  path.



Decision problems

Problems with  (yes/no) answers. Hence, .

Example of a decision problem: .

 if there is a  path in  with at most  edges. Otherwise, 
.

We can regard a decision problem as a mapping from instances to .

Instances with solution 1 are called yes-instances. Instances with solution 0 are called no-
instances.

Optimization problems (like SHORTEST-PATH) can usually be turned into decision 
problems (like PATH).



Polynomial-time solvable problems => Class of P

能在多项式时间内解决的。

1. We assume that instances of a problem are encoded as binary strings.

2. An algorithm solves a problem in time  if for any instance of length , the 
algorithm returns a solution (  or ) in time .

3. If  for some constant , the problem is polynomial-time solvable.

Suppose we define  as the class of polynomial-time solvable problems.



In the lecture, we pick binary encoding, giving input size .

In particular, numbers are represented in binary, not unary.

We use the notation  to refer to a chosen encoding of instance  of a problem. => Already 
converted to a binary string.

Encodings are always binary strings in our setting.

Languages

Alphabet: finite set  of symbols.

Language L over : a set of strings of symbols from .

Example:  and .

We also allow an empty string and denote it by . => 

The empty language is denoted  (It does not contain ).

 denotes the language of all strings (including ).



Languages and decision problems

Recall that we encode instances of a decision problem as binary strings.

Also recall that we may view a decision problem as a mapping  from instances  to 
.

 can be specified by the binary strings that encode yes-instances of the problem. => If you 
just specify which strings are yes-instances, then you have also specified .

My Understanding: Q can encode x and maps it into 1. L contains all the yes-instances.



Language accepted/decided by an algorithm

Let  be an algorithm for a decision problem and denote by  its output (if any) on 
input .

 accepts a string  if ,  rejects a string  if .

There may be strings that  neither accepts nor rejects. =>  loop forever.

The language accepted by A is,

Suppose in addition that all strings not in  are rejected by , i.e.,  for all 
. 

Then we say that  is decided by .



Deciding a language is stronger than accepting it.

Example:  can both be accepted and decided in polynomial time.

Define the complexity class P:

 in terms of acceptance

Lemma



But for the other direction, we need to show that if  is accepted by a polynomial-time algorithm 
, it is decided by a polynomial-time algorithm .



Verfication

Let  be a language.

We might not have an efficient algorithm that accepts .



Consider an algorithm  taking two parameters, . => If you need to solve an 
assignment, it might be simpler to verify the solution of your fellow students and having to solve 
the assignment from scratch. You can think of  is a candidate solution that you are given with 
the problem instance.

Instead of trying to find a solution to  (which may take long time),  instead verifies that  is a 
solution to .

HAM-CYCLE problem

An undirected graph  is hamiltonian if it contains a simple cycle containing every vertex of . 
=> A cycle visits every vertex exactly once in a graph. Cannot visit the same vertex more than 
once.

We define:

It is very hard can be decided in polynomial time, however, it is easy to show that 
 can be verified in polynomial time.



.

.

Designing  to run in polynomial time is easy. Hence, we can verify  in 
polynomial time.

Verifying a language

A verification algorithm is an algorithm  taking two arguments, , where  is the 
certificate. .

 verifies a string  if there is a certificate  such that .



The language verified by  is,

The complexity class NP

NP is the class of languages that can be verified in polynomial time.

More precisely,  if and only if there is a polynomial-time verification algorithm  and a 
constant  such that



NP-complete problems

There are problems in NP that are “the most difficult” in that class.

If any one of them can be solved in polynomial time then every problem in NP can be solved in 
polynomial time.

These difficult problems are called NP-complete.

Polynomial-time Reducibility

If  then  is in a sense no harder to solve than .



NP-complete languages

 is NP-hard if property  holds (and possibly not property ).



Circuit satisfiability



1. Showing 

2. Showing that  is NP-hard





Decision problems and languages





NP-completeness of other problems via reduction



SAT problem







.

.

. => 构造 vertex triple 图。正过来是选1，连起来发现是个
CLIQUE。反过来是找⼀个 CLIQUE 然后令其分别为 1，未知的点随便选，发现 。

. => 找补集。



完全图。

All the proof refers to the Slides - NPC2.
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