NPC

e Overview for today

Reducibility => Show that one problem is essentially at least as hard as another problem.
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e Definition of a problem

1. Consider a set I of instances and a set S of solutions.

2. An abstract problem is a binary relation between I and S, i.e., a subset of I x S.

For SHORTEST — PATH, an instance is a triple (G, s, t).
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A solution is a sequence of vertices forming a shortest s to £ path.



e Decision problems

Problems with 1/0 (yes/no) answers. Hence, S = {0, 1}.

Example of a decision problem: PATH.

PATH((G,u,v,k)) = 1if there isa u — to — v path in G with at most k edges. Otherwise,
PATH(< G,u,v,k >) = 0.

We can regard a decision problem as a mapping from instances to S = {0, 1}.
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Instances with solution 1 are called yes-instances. Instances with solution 0 are called rno-
instances.

Optimization problems (like SHORTEST-PATH) can usually be turned into decision
problems (like PATH).
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e Polynomial-time solvable problems => Class of P
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1. We assume that instances of a problem are encoded as binary strings.

2. An algorithm solves a problem in time O(7T'(n)) if for any instance of length 7, the
algorithm returns a solution (0 or 1) in time O(T'(n)).
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3. If T(n) = O(n*) for some constant k, the problem is polynomial-time solvable.

Suppose we define P as the class of polynomial-time solvable problems.

e What is missing in this definition? Which encoding of the input is

assumed? @ -
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In the lecture, we pick binary encoding, giving input size n = |lgk| + 1.

e In this case, running time is ©(k) = ©(2") which is exponential
in the input size. A\ ——
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e These two ways of encoding k correspond to two different
problems.
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In particular, numbers are represented in binary, not unary.

We use the notation < = > to refer to a chosen encoding of instance x of a problem. => Already
converted to a binary string.

Encodings are always binary strings in our setting.

o Languages
Alphabet: finite set » | of symbols.
Language L over ) : a set of strings of symbols from ) .
Example: > = {a, b, c} and L = {a, ba, cab, bbac, . .. }.
We also allow an empty string and denote itby e. =>¢€ € L
The empty language is denoted () (It does not contain €).

3" denotes the language of all strings (including e).



e Any language L over X is a subset of X*.
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e Languages and decision problems
Recall that we encode instances of a decision problem as binary strings.

Also recall that we may view a decision problem as a mapping Q(x) from instances x to

> =40,1}.

Q) can be specified by the binary strings that encode yes-instances of the problem. => If you
just specify which strings are yes-instances, then you have also specified Q).

e Thus, we can view () as a language L:

L={ze=Q(z)=1}.
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My Understanding: Q can encode x and maps it into 1. L contains all the yes-instances.



e Forinstance, PATH is the of binary strings (G, u, v, k)
where G is a graph, « and v ar€ vertices of (G, and there is a
u-to-v path in GG with at most k edges.
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o Language accepted/decided by an algorithm

Let A be an algorithm for a decision problem and denote by A(z) € {0, 1} its output (if any) on

input x.

L2\

A accepts a string x if A(x) = 1, A rejects a string z if A(x) = 0.
There may be strings that A neither accepts nor rejects. => A loop forever.
The language accepted by A is,

L={xec{0,1}*|A(z) = 1}

Suppose in addition that all strings not in L are rejected by A4, i.e., A(z) = 0 for all
z € {0,1}*\ L.

Then we say that L is decided by A.



e Then we say that L is decided by A.
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Deciding a language is stronger than accepting it.

Accepting/deciding in polynomial time

e Language L is accepted by an algorithm A in polynomjal time if
A accepts L and runs in polynomial time o

e L is decided by A in polynomial time if A decides druns in
polynomial tim all string
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Example: PAT H can both be accepted and decided in polynomial time.

Define the complexity class P:

P = {L C {0,1}"*|there exists an algorithm A that
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decides L in polynomial time}.
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e P in terms of acceptance

Lemma



P = {L C {0, 1}*|there exists an algorithm that
decides L in polynomial time }

= {L C {0, 1}*|there exists an algorithm that
accepts L in polynomial time}.
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But for the other direction, we need to show that if L is accepted by a polynomial-time algorithm
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A, it is decided by a polynomial-time algorithm A/.



P in terms of acceptance

e Need to show: if L is accepted by a polynomial-time algorithm A,
it is decided by a polynomial-time algorithm A’.

e Since A accepts L, it runs in at most enk steps before halting on
any n-length string from L, where ¢ and k are constants.

e Now let s be any string in 2*.

e A’simulates A with input s for at most c|s|* steps.

e If the simulation has not halted after this many steps, A’ halts
and outputs 0.

e Otherwise, A’ outputs whatever A outputs.

e A’ decides L and runs in polynomial time.

o Verfication
Let L be a language.

We might not have an efficient algorithm that accepts L.



We might not have angfficienyalgorithm that accepts L.
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Consider an algorithm A taking two parameters, z,c € Y . => If you need to solve an
assignment, it might be simpler to verify the solution of your fellow students and having to solve
the assignment from scratch. You can think of ¢ is a candidate solution that you are given with
the problem instance.

Instead of trying to find a solution to  (which may take long time), A instead verifies that c is a
solution to x.

e HAM-CYCLE problem

An undirected graph G is hamiltonian if it contains a simple cycle containing every vertex of G.
=> A cycle visits every vertex exactly once in a graph. Cannot visit the same vertex more than

once.
We define:

HAM — CYCLE = {< G > |G is Hamiltonian}.

It is very hard can be decided in polynomial time, however, it is easy to show that
HAM — CYCLE can be verified in polynomial time.



Verifying HAM-CYCLE

e Consider instead an algorithm Ay, taking two parameters, (G)
and (C).

e Ap,n checks that (G) defines an undirected graph G and that
(C) encodes a cycle C' containing every vertex of G exactly
once.

et
D“'/} we e Ifso, Ap.m outputs 1, otherwise 0.
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o Whatis Apam((G), (C))?

Apam(< G >, < C >) =0.

U1 U2
®
G = C= ['01,1)2,'04,'03]
®
v3 U4

Apam(< G >, < C>) =1

Designing Apqm, to run in polynomial time is easy. Hence, we can verify HAM — CYCLFE in
polynomial time.

o Verifying a language

A verification algorithm is an algorithm A taking two arguments, z,y € {0, 1}*, where y is the
certificate. x — instances,y — certi ficate.

A verifies a string z if there is a certificate y such that A(z,y) = 1.



The language verified by A is,
L ={x €{0,1}*|thereisay € {0,1}* such that A(z,y) = 1}.
e Example:

HAM-CYCLE = {z € {0,1}"|thereisay € {O,m

that Apam (z,y) = 13/
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e The complexity class NP
NP is the class of languages that can be verified in polynomial time.

More precisely, L € NP if and only if there is a polynomial-time verification algorithm A and a
constant ¢ such that

L ={x € {0,1}*|thereisay € {0,1}" with

|5I,| = O(|x|°) such that A(z,y) = 1}.
e e bo ShTt.

e We have seen that HAM-CYCLE € NP.
e |f L € Pthen L € NP. Why? _, wm,
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« NP-complete problems

There are problems in NP that are “the most difficult” in that class.

If any one of them can be solved in polynomial time then every problem in NP can be solved in
polynomial time.

These difficult problems are called NP-complete.
e HAM-CYCLE is NP-complete. \ l
e Hence, if we could show HAM-CYCLE € P then P = NP.
o Polynomial-time Reducibility

e Language L is polynomial-time reducible to language L if

there is a polynomial-time computiple-fumgtion
f:{0,1}* — {0,1}* such the {0, 1},

e In this case, we write L1W drﬁimﬂz ~lewt/]
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If L1 <p L5 then L is in a sense no harder to solve than L.




e More precisely,
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e NP-complete languages

e Language L is NP-complete if

1. L € NP and
2. L' <p Lforevery L' € NP.
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L is NP-hard if property 2 holds (and possibly not property 1).



' f"L .~ The class of NP-complete languages is denoted NPC.
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e Circuit satisfiability

e A boolean combinational circuit consists of a collection of logic
gates connected together with wires.

e The logic gates allowed are AND, OR, and NOT.

e Each wire has a value which is either 0 or 1.

e Some wires are specified by input values and the rest by the logic
gates.

e Other wires specify output values.

e We can represent a circuit as an acyclic graph.



e Given a boolean combinational circuit C' with one output wire.

e A satisfying assignment for C'is an assignment of values to input
wires of C' causing an output of 1.

e The circuit satisfiability problem CIRCUIT-SAT is to decide if a

given circuit has a satisfying assignment:

CIRCUIT-SAT = {(C)|C is a satisfiable boolean

combinational circuit}.

e We will show that CIRCUIT-SAT is NP-complete.

1. Showing CIRCUIT — SAT € NP

e We construct algorithm A with inputs x and y.

e A checks that x represents a boolean combinational circuit C
with one output wire and that y represents an assignment of truth
values to the wires of C.

If so, A checks that y represents a valid truth assignment.

If so, A checks that the single output is 1.

If this is the case, A returns 1; otherwise it returns 0.

A is a verification algorithm for CIRCUIT-SAT and can easily be
made to run in polynomial time.

e Thus, CIRCUIT-SAT € NP.

2. Showing that CIRCUIT — SAT is NP-hard



AP

e Consider any language L € NP.

e We need to give a polynomial-time reduction from L to
CIRCUIT-SAT.

e In other words, we need to find a polynomial-time algorithm A
computing a function f : {0,1}* — {0, 1}* such that

€L & f(x e CIRCUIT-SAT.

U
e

Showing that CIRCUIT-SAT is NP-hard
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Since L € NP, there is a polynomial-time algorithm A such that

L ={z € {0,1}*|thereisay € {0,1}* with
ly| = O(|=|°) such that A(z,y) = 1}.

Given string z, f outputs a circuit C(z) with O(|z|®) input wires.
We ensure that C'(x) has a satisfying assignment of its input
wires if and only if A(z,y) = 1 for some y with |y| = O(|z|°).
This way,

’\:\}Z@@\%——x € L & f(x) = (C(z)) € CIRCUIT-SAT.

Each y with |y| = O(|x|®) defines an input to C(z).
Intuition: Circuit C'(x) implements algorithm A on input (z, y)
with z fixed.

We ensure that A(z,y) = 1if and only if y is a satisfying
assignment.

e There is a constant k such that the worst-case running time
T'(n) of A onaninput (z,y) is O(n*) where n = |z|.

e The machine executing A has a certain configuration at each
time step.

e The configuration gives a complete specification of the current
memory, CPU state, and so on.

e When executing A on (z, y), the machine goes through a series
of configurations co, ¢, . . ., cp(,) (assume for simplicity that A
runs for exactly T'(n) steps on (z, y)).

e Configuration ¢y specifies inputs x and y and the program code

for A.

e One bit of the last configuration cr(,,) specifies the 0/1-output of
M

A.
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e Let M be the circuit implementing the hardware of the machine.

e We feed the initial configuration cg as input wires to M.

e M performs a single step of A and the new configuration c; is
stored on output wires.

e These output wires feed into M which makes another step,
forming c2 as output, and so on.

e In total, we glue T'(n) copies of M together.

e This gives a BIG circuit representing the entire execution of A on
input (z, ).

e The size of the circuit is still polynomial in 2, however.

e We modify the circuit by hard-wiring part of the input to that
specified by binary string « and so that the only output wire is
that corresponding to the output of A.

e The circuit now only takes inputs y.

The resulting circuit C'(x) has a satisfying assignment y if and

only if A(z,y) = 1.

C'(z) can be computed from z in time polynomial in |z|.

This shows that L. <p CIRCUIT-SAT.

Thus, CIRCUIT-SAT is NP-hard.

Since also CIRCUIT-SAT € NP, it follows that CIRCUIT-SAT is

NP-complete.

CIRCUIT-SAT <p SAT <p 3-CNF-SAT
<p SUBSET-SUM,
3-CNF-SAT <p CLIQUE <p VERTEX-COVER
<p HAM-CYCLE <p TSP
Overview for today

e NP-completeness and reductions
e NP-completeness of:
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o Decision problems and languages



e A decision problem () consists of yes-instances and
no-instances.

e Example, Q = HAM-CYCLE: (G) is a yes-instance if G contains
a simple cycle containing all vertices of Gi; otherwise (G) is a
no-instance.

e We can view a problem (Q as a mapping of yes-instances to 1
and no-instances to 0.

e We can also view () as a language L:

L= {z € {0,1}*|Q(z) = 1}.

e A verification algorithm is an algorithm A taking two arguments,
z,y € {0,1}*, where y is the certificate.

o A verifies a string z if there is a certificate ¢ such that
A(z,y) = 1.

e The language @ by A is

L= {z € {0,1}"|thereisay € {0,1}" such
that A(z,y) = 1}.

The complexity class NP

e NP is the class of languages that can be verified in polynomial
time.

e In other words, L € NP if and only if there is a polynomial-time
verification algorithm A and a constant ¢ such that

L ={z € {0,1}"|thereisay € {0,1}" with
ly| = O(|z|°) such that A(z,y) = 1}.

We saw that P C NP.
e Big open problem: is P = NP?



Reducibility

e Language L is polynomial-time reducible to language Lo if

there is a polynomial-time computible function
f:{0,1}* — {0,1}* such that forall = € {O.,l}\"*,mm hoatd

x € L1 & f(x) € Ls. bo an algerivvn

ymplyreen®s
reguotiong - B Jj(f :;:: ;‘m ";:
&m l - ';vsl;w“m::‘.
71
w4 At n L pafo et
X% R0 S OECAW | 2
X5 b i )
x € L & f(x) € Ls.
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e We use the notation L; <p Ls for this.
e We saw that

ﬁ Li<plLyANLy€e P= L€

e Language L is NP-complete if

1. L € NP and
2. L' <p Lforevery L' € NP.

e L is NP-hard if L satisfies property 2 (and possibly not property
1).
We saw that if any language of NPC belongs to P then P = NP.
e We also showed that CIRCUIT-SAT is NP-complete.

o NP-completeness of other problems via reduction



NP
o lLetlL an@}j two languages with L' € NPC.
e If L' <p L then L is NP-hard.
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NP-completeness of other problems via reduction
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e General technique to show NP-completeness of a language L:

i) o Show that L € NP.
Ma 4 _ o Pick another language L’ known to be NP-complete (for
| O — CIRCUIT-SAT).
@o Show that L' <p L, i.e., show that there is a polynomial-time
computible function f : {0,1}* — {0, 1}* such that for all
z € {0,1}*,
rel & f(z) € L

e SAT problem



The SAT problem

e A boolean formula ¢ consists of boolean variables 1, . . ., zy,
Ny boolean connectives A, V, =, —, <>, and parentheses (and ).
‘M/ # o Example: ¢ = (z1 V z2) A (2 V 23 V —14).
e A satisfying assignment for a boolean formula ¢ is an assignment
of 0/1-values to variables that makes ¢ evaluate to 1.
¢ is satisfiable if there exists a satisfying assignment for ¢.

5 [\\ ¢« e We can now define the problem SAT:

o | —" 7 SAT = {(¢)|¢ is a satisfiable boolean formula}.
h” £ WWW
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Tah’” We will show that SAT is NP-complete.

To show SAT € NPC, we follow our recipe:

o Show that SAT € NP.
o Show that CIRCUIT-SAT <p SAT.

To show that SAT € NP, we construct a verification algorithm A
taking inputs x and y.

It regards = as a boolean formula ¢ and y as an assignment of
values to variables of ¢.

A returns 1 if y defines a satisfying assignment for ¢; otherwise,
A returns 0.

We can easily make A run in polynomial time.

Thus, SAT € NP.




Showing CIRCUIT-SAT <p SAT

e Given a circuit C, we transform it into a boolean function ¢ as

follows.
e Associate a variable xz; with each wire of C let x,,, be the output
wire variable. Xi -> i“th wire

e We can view each gate of C' as a function mapping the values on
o . . subrormula for each gate
its input wires to the value on its output wire.

e Construct a sub-formula for each such function.

e Example:

I

T4 I

i)

Sub-formula for gate: x7 <> (1 A 22 A x4)



o If¢q,..., ¢k are the sub-formulas, we define ¢ to be
T NP1 NP2 A ...\ Q.

e Example:
®=x10 N (x4 & 23) A (5 © (21 V 232))
A (zg > z4) A (7 © (21 A 29 A T4))
A (zg <> (x5 V 26)) A (29 ¢ (26 V 7))
A (210 ¢ (27 A28 A x9)).

e ¢ can be constructed in polynomial time.

e Inwords, ¢ is stating that the output wire is 1 and that each gate
behaves as it is supposed to.

e Thus, C is satisfiable if and only if ¢ is satisfiable:

(C) € CIRCUIT-SAT ;:» (@) € SAT.
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e We have now shown that SAT is NP-complete. 7/« dvuc we el
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e 3—CNF — SAT
SAT <,3 -~ CNF — SAT.
e« SUBSET — SUM
3 - CNF — SAT <p SUBSET — SUM.
« CLIQUE

3—CNF — SAT <p CLIQUE. => 41 vertex triple &, IEif 2k, ERRK LI
CLIQUE. Jzid>fJE#—~ CLIQUE RJ54&Hanh 1, RN GEEE, XMoo =1,

« VERTEX — COVER
CLIQUE <p VERTEX — COVER. => ## .

e HAM — CYCLE <p TSP



e Let G = (V, F) be an instance of the Hamilton-cycle problem.
e We construct a complete graph G’ = (V, E’) on vertex set V.

127 e Define a cost function ¢ on E’ by

. AL Ho Syite [ 0 if(u,v) € E,
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e Show that: (G) € HAM-CYCLE & (G, ¢,0) € TSP.
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All the proof refers to the Slides - NPC2.
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