Note for RA

This note is based on the course AADS taught by UCPH.
o Why do we need randomized algorithms? (Pros and Cons)
Faster => But weaker guarantees
Simpler code but harder to analyze.
Sometimes it might be the only option, e.g., Big Data, Machine Learning, Security, etc.
o Classification of Randomized Algorithms
Las Vegas & Monte Carlo.

Las Vegas algorithms always get a good answer but don't know how long it takes. =>

RandQS(S).

Monte Carlo algorithms might give a wrong answer, but we have the trade-off between the
running time and the probability of returning the correct solution. => RandMinCut(G).

e QuickSort - Pseudocode

The basic idea of the quicksort is sorting an array by comparing each element with the selected
pivot in the iteration.

function QS(S={s1, ..., sn})
Assumes all elements in S are distinct.
if |S| <= 1 then
return 1ist(S)
else
Pick pivot x in S
L<-{yinsS | y<x}
R<-{yin S | y > xr
return QS(L) + [x] + QS(R)

e QuickSort - Lemma 1

In the basic algorithm, we don't specify how to pick the pivot. However, for any pivoting strategy,
QS correctly sort the numbers.

Proof - By induction on n.

1. n = 0,1 => Trivial

2. We assume it holds for up to n — 1 numbers.

3. Then by induction hypothesis Q.S(L) and QS(R) are sorted as their size are less or equal
ton — 1.

Hence, QS(L) + [z] + QS(R) is sorted.

O Why it can ot rwmbers ?

e RandQS(S) - Pseudocode

Randomized QuickSort Algorithm specifies the method of picking the pivot is to pick pivot
x € S uniformly at random.

function RANDQS(S={sl1, ..., sn})
Assumes all elements in S are distinct.
if |S| <= 1 then
return S
else
Pick pivot x in S, uniformly at random
L<-{yinsS |y < x}
R<-{yin S | y > x}
return RANDQS(L) + [x]| + RANDQS(R)

e RandQS(S) - Analyse

If lucky, everytime we pick the middle one to be the pivot during the iteration. Then, |L| < 5

and |R| < 4. The running time is, picking pivot + comparing,

n
3)
n

= 0(n) +2(0(5) +21(7))

T(n) = O(n) + 2T

— O(n) + 20(%) + 40(%)+. .. +n0(1)
— O(n) + 20(%)+. .. +n0(1)
As every term except nO(1) is O(logn), hence the running time is O(n logn).
If we are unlucky, the running time should be Q(n?).
However, we show the interest on the average time.

From the pseudocode, we can know the running time of the algorithm is dominated by the
number of comparisons.

What is the expected number of comparisons? => E[#comparisons.
e Theorem 1

E[#comparisons| € O(nlogn).

Proof

Let [S(1), S(2), -+, S(n)] is sorted by RANDQS(S).

For ¢ < jlet X;; be the number of times that S;) and S ;) are compared. We can observe that
Xi; € {0, 1}. That's because if one of them is selected to be the pivot, then it will be the only
opportunity to get 1. Otherwise, they will never be compared to each other.

Then we get,

E[#comparisons] =]E[Z X = Z E[X;;]

1<J 1<j

Since X;; € {0, 1} and it is an indicator variable for the event that S(;) and S(;) are compared.
Let p;; be the prabability of S(;) and S;) are compared.

Then,E[Xij] = (]. —pij) -0 +pij 1= Dij.
Then we get Zi<jE[Xij] - Zi<jpij'

e Lemma?Z2

S(;) and S(;) are compared if and only if S(;) or S;) is first of the array {S;), ..., S(;} to be
chosen as pivot.

Proof
Lemma ‘ P
S(iy and S(jy are compared iff Sy or S isw(,-), LS00 ‘r‘%/tﬂ {HW/Z«;H)(@i %i }() % W % }
to be chosen as pivot. ;
\ 0 v T =)7 | 7s
Proof. } Sty Si)Lx./ v/% B 7’ ﬁ’ s /Watro W?/ji,
Each recursive call returns some sublist [S(a), ..., S()]. Let Sver, Sf8
x = 5(c) be the pivot.
Suppose a < i< j<b. [a]---[i]---[j] --]p] ({,2,5/4?—’5,617,47) b
c <iorc>j: S and S(;) not compared now, but together /\b V/\ %/
in recursion. Recursion stops when i < ¢ <. T (V)85 2
i < c<j: 54 and S never compared. W/\% 73S
c e {i.j}: Si and S(jy compared once.

Thus, p;; is the conditional probability of picking S(;) or S(;) given that the pivot is picked
uniformly at random in {S(;), S(i41),-- -, S }:

2
pij=Prlee {i,jllee {ii+ 1. jhuar]=——7

Therefore, we get

2
E[#comparisons] = Zpij = Z —

i<y It

n—1 n 92

— sz <+~ Ea:tendz

1<J
Letk=7—i+1, jmin =1+ 1, knin = 2, jmax = 7 Kmax =1 — 3 + 1
n—1n—i+1 9

I
[
[;
|

e
=2n(H, — 1)

"1
§2n/ —dz
1 L

=2nlnn = O(nlogn)

—_

e RandQS - Summary

When |S| = n, the E[#comparisons| < 2nH,, € O(nlogn) for any input.

e Min-cut
Min-Cut e
w\% mine (A min— v
I, 4 o (el
Problem: Given a connected graph G = (V, E) l) ¢ C { 7 { \
b
vi]? ™, d v (&) i
O L
Find smallest C C E that splits G. a e
-t
it 4 Pl
C is called a min-cut, and A\(G) :=|C| is the@ i Lomovs @
onnectivityyof G. C < 3 N7 4
. v o i G 15 diywnneceed
> Find Min.te hetv)
109

Min — cut problem. Find the smallest set C, which is the subset of the edge, that can make the
original graph from connect to disconnect by removing the set.

C is called a min-cut, and A\(G) = |C|.

e RANDMINCUT - Pesudocode

function RANDMINCUT(V, E)

while |V| > 2 and E is not empty do
Pick e in E u.a.r.
Contract e and remove self-loops.

return E

e RANDMINCUT - Lemma 1

RANDMINCUT(Q) always returns a cut.

Proof => By induction on the number k of iterations of the loop (k < n — 2).

1. k = 0is trivial.

2. Suppose that it is true for up to k — 1 iterations.

3. First iteration constructs G’ by contracting an edge from G and removing self-loops, and
then, do at most k — 1 further iterations starting from G’ so by the induction hypothesis

we return a cut in G'.

But every such cut is also a cut in G.

Randomized Min-Cut, Analysis

1: function RANDMINCuUT(V, E)
2: while |V| > 2 and E # () do

3: Pick e € E uniformly at random. ()

4 Contract e and remove self—loops.@

5: return £
Lemma n
RANDMINCUT(G) always returns a cut.

Proof.

Proof by induction on the number k of iterations of the loop
(note k < n—2). If k=0 it is trivial, so suppose that itTs
true for up to k — 1 iterations. The first iteration constructs
graph G’ by contracting an edge from G and removing
self-loops, and then do at most k — 1 futher iterations starting
from G’ so by the induction hypothesis we return a cut in G'.
But every such cut is also a cut in G. O

e RANDMINCUT - Observation
We observe that RANDMINCUT(G) may return a cut of size > A\(G).
Lemma
A specific min-cut C is returned if and only if no edge from C was contracted.

e RANDMINCUT - Theorem

For any min-cut C, the probability that RANDMINCUT(G) returns C'is > ﬁ

Proof

The case that the algorithm can return the min-cut is all the contracted edges removed before are

not in the C.

Randomized Min-Cut, Analysis

e In words, &; is the event that the ith edge contracted is not in
C, i.e., the ith contraction does not destroy C.

e & N...NEy_p is thus the event that C is not destroyed in

Theorem any step of the algorithm.

For any min-cut C the probability that RANDMINCUT(G)

returns C is > n(n -

Let ey,...,e,_» be the contracted edges, let Go = G and
G,' = G,-,l/e,-.

Let & be the event that ¢; ¢ C.

C is returned iff EsN---NE, .

Goal: Pri&n---Né&, 5] > n(n 1)

Thus, our goal is Prle;A. .. Aej_a] > n(n2_1))

To know the probability of and operation.

.. A This is easy to prove by induction.
Conditional Probabilities y o prove by

Given events &1, &, the conditional probability of £, given &

. %s (Zjefézned as% ‘H‘ . - E,Tuiv ;ﬁ% z?i
@Mw@ @O % |

It follows that \Jb

Pri&1 N &] = Pr[&y] - Pr&]&1]

And in general for events|Es, ..., Ek

Prnt_,&] = Pr[&] - Pr[&l&] - - - P& Nkt &]

Then, the goal is converted to H?:_lz p; where p; = Prle;|e1A. .. Ae;_1]. => 53K, REI&H/NE|
Bl A& R B IR &R/ EISEE BN, => Stage 1

1. We can know that G; = (V;, E;) has n; = n — 4 vertices as every time, the contraction
operation will get rid of one vertex.

2. Contractions can not decrease the min-cut size, so A(G;) > |C.

o BVET, XTKTF, BAG,HFHNYIEHEHLEGCHIY), IRE/NFHIER, NG
N/ AR, => EFtE EE—TWERAIIER,
3. It follows that each vertex v of G; has degree d;(v) at least |C/|.
If there is @ d; (V) min in G; such that d; (v)min < A(G;), it is contradicting the original min-
cutin G; is min-cut. => FIE— P REERBE, HITFEXTSBEEEIE, BIEAR
BEXE, Hence, d;(v)min > A(G;) > |C].

4. Summing up all degrees of G;, with the usage of handshaking,

/ B
Ra ndomlzed M |n—Cut, PI’OOf %} o Note that the edges incident to a vertex v form a cut and so
di(v) = MG) > [C].

o We use that each edge is counted twice in the sum
G; = (V;, E;) has n; = n — i vertices. (why?) Lvev, di(v)-
Contractions can not decrease the min-cut size, so

(6)>1c| Y
It follows that each vertex v of G; has degree d;(v) at least min ﬁ/ Vv - | '
|C]. (why?) e » - L/C |
i IId i . ~ &
Summing up all degrees o i 0//((/) 2 7@] Mendiv = n[‘

Finally, we get | E;| > 1n;|C|. => Stage 2

Randomized Min-Cut, Proof

We have shown that G; = (V;, E;) has n; = n — i vertices and
that |E;| > 3n;|C|. We want to bound

DN
= Pr[uniformly rando@n ecE jisnotin (| {%] —7 l{j? ;%«M sﬁ’ \\ 7}\ K\&/ D%V\j%

The probability of picking an edge of C in the ith iteration,
given that no edge of C has been picked in a previous
iteration, is

1—pi

ETHBRMABEAR, n Bi - DRERFITHSE, DRO—AA, Filln — (i — 1),

2 n—i—

Then, we can get p; > 1 — —— = 22— —> Stage 3

Pr[C returned]

n—2

= Hp; where p; = Pr[&i|E1 N -+ N Ei4]
i=1
n—2 .
n—1—
> _
- gn+1—i

Therefore, for a given min-cut, Pr[C is returned| > R

76

Randomized Min-Cut, Summary

So for given min-cut C, Pr[C is returned] > ﬁ W

T N N ———~__——

-)
Is this tight? l.e. do we have examples matching this bound? o - 9, »M})%ﬁ‘g}@
n \
O S

Yes! Consider the cycle C, on n vertices. Every one of the
(;) = 1("2;11 pairs of edges is a min-cut and all pairs are

equally likely to be returned. ;m}a%%)_/ ﬁ'\) y \@ %%&}Q))
i, ¥
v

Is this probability good? %W\\W /_/
2
How can we improve it? d
Ra ndom|zed M | n_Cut, TradeOfF e In each call to RA\QNDI\[IN(‘I"I'(G), the probability that a min-cut is not returned
is at most 1 — -1
Imagine calling RANDMINCUT(G) 1“1("2;ll times and taking —
smallest cut returned.
)
’ tn(nz—l) Q/ /j\{(\
P t incut] < (1 — \
r[not a min-cut] < (n(n—1)>))(\7\
A\
4
7
o Tradeoff
Above

o Simple Implementation

In practice, using a "union-find" data structure the running time is as the following. =>
Polynomial time.

Randomized Min-Cut, Simple implementation
In practice, using a slata structure.

1: function RANDMINCuUT(V, E)
2: for uc V do

3: MAKE-SET(u)

4: C < (), 7 + a random permutation of E, r < |V/| . S
5. for uv € E in the order = do N o %4
6: pu < FIND(u), p, < FIND(v) Yy M ?)m ly v EJ]M
7 if p, # p, then 1—77 W\ '

8: if r > 2 then dm‘a;ﬁé sety

9: r<—r—1 J

10: UNION(py, pv)

11: else

12: C+ CuU{uv}

13: return C

The running time for this is O(ma(n)). Running it O(n?)
times to get high probability takes O(n?ma(n)) time.

/\/\/\f—\/——/—\N\/\/—\—/

e Conversion

L->MEERBIELE, BLAREN—EFTEREETSR

o

M->LEEZR, —ERRERELGR,

	Note for RA

