
This note is based on the course AADS taught by UCPH.

Note for RA  

Why do we need randomized algorithms? (Pros and Cons)

Faster => But weaker guarantees

Simpler code but harder to analyze.

Sometimes it might be the only option, e.g., Big Data, Machine Learning, Security, etc.

Classification of Randomized Algorithms

Las Vegas & Monte Carlo.

Las Vegas algorithms always get a good answer but don't know how long it takes. => 
.

Monte Carlo algorithms might give a wrong answer, but we have the trade-off between the 
running time and the probability of returning the correct solution. => .

QuickSort - Pseudocode

The basic idea of the quicksort is sorting an array by comparing each element with the selected 
pivot in the iteration.

QuickSort - Lemma 1

function QS(S={s1, ..., sn})

Assumes all elements in S are distinct.

  if |S| <= 1 then

    return list(S)

  else

    Pick pivot x in S

    L <- {y in S | y < x}

    R <- {y in S | y > x}

    return QS(L) + [x] + QS(R)



In the basic algorithm, we don't specify how to pick the pivot. However, for any pivoting strategy, 
QS correctly sort the numbers.

Proof  - By induction on .

1.  => Trivial
2. We assume it holds for up to  numbers.
3. Then by induction hypothesis  and  are sorted as their size are less or equal 

to .

Hence,  is sorted.

RandQS(S) - Pseudocode

Randomized QuickSort Algorithm specifies the method of picking the pivot is to pick pivot 
 uniformly at random.

RandQS(S) - Analyse

If lucky, everytime we pick the middle one to be the pivot during the iteration. Then, 
and . The running time is, picking pivot + comparing,

function RANDQS(S={s1, ..., sn})

Assumes all elements in S are distinct.

  if |S| <= 1 then

    return S

  else

    Pick pivot x in S, uniformly at random

    L <- {y in S | y < x}

    R <- {y in S | y > x}

    return RANDQS(L) + [x] + RANDQS(R)



As every term except  is , hence the running time is .

If we are unlucky, the running time should be .

However, we show the interest on the average time.

From the pseudocode, we can know the running time of the algorithm is dominated by the 
number of comparisons. 

What is the expected number of comparisons? => .

Theorem 1

.

Proof

Let  is sorted by .

For  let  be the number of times that  and  are compared. We can observe that 
. That's because if one of them is selected to be the pivot, then it will be the only 

opportunity to get . Otherwise, they will never be compared to each other.

Then we get,

Since  and it is an indicator variable for the event that  and  are compared. 
Let  be the prabability of  and  are compared.

Then, .

Then we get .

Lemma 2



 and  are compared if and only if  or  is first of the array  to be 
chosen as pivot.

Proof

Thus,  is the conditional probability of picking  or  given that the pivot is picked 
uniformly at random in :

Therefore, we get



RandQS - Summary

When , the  for any input.

Min-cut

 problem. Find the smallest set , which is the subset of the edge, that can make the 
original graph from connect to disconnect by removing the set.

 is called a min-cut, and .

RANDMINCUT - Pesudocode

RANDMINCUT - Lemma 1

function RANDMINCUT(V, E)

while |V| > 2 and E is not empty do

  Pick e in E u.a.r.

  Contract e and remove self-loops.

return E



 always returns a cut.

Proof => By induction on the number  of iterations of the loop ( ).

1.  is trivial.
2. Suppose that it is true for up to  iterations.
3. First iteration constructs  by contracting an edge from  and removing self-loops, and 

then, do at most  further iterations starting from  so by the induction hypothesis 
we return a cut in .

But every such cut is also a cut in .

RANDMINCUT - Observation

We observe that  may return a cut of size .

Lemma

A specific min-cut C is returned if and only if no edge from C was contracted.

RANDMINCUT - Theorem

For any min-cut , the probability that  returns  is .

Proof

The case that the algorithm can return the min-cut is all the contracted edges removed before are 
not in the .



Thus, our goal is .

To know the probability of and operation.

Then, the goal is converted to  where . => 待求，返回最⼩割
即前i次都没有选到最⼩割集合⾥的边。=> Stage 1

1. We can know that  has  vertices as every time, the contraction 
operation will get rid of one vertex.

2. Contractions can not decrease the min-cut size, so .

⾄少等于，关于⼤于，因为 中的切同样也是 中的切，如果有⼩于的情况，则
的最⼩切就不是最⼩切。=> 同样也是上⾯⼀个观察的证明。

3. It follows that each vertex  of  has degree  at least .

If there is a  in  such that , it is contradicting the original min-
cut in  is min-cut. => 挪掉⼀个点的度的边数，相当于把这个点挪出当前图，即图不
再联通。Hence, .

4. Summing up all degrees of , with the usage of handshaking, 



Finally, we get . => Stage 2

第⼆步是条件概率公式。  是 次迭代剩下的点，1次少⼀个点，所以 。

Then, we can get . => Stage 3

Therefore, for a given min-cut, .



Tradeoff

Above

Simple Implementation

In practice, using a "union-find" data structure the running time is as the following. => 
Polynomial time.



Conversion

L -> M 在结束前停⽌，那么返回的⼀定不是最佳答案。

M -> L 重复多次，⼀定会返回最佳结果。
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