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Abstract
Siamese networks have become a common structure in

various recent models for unsupervised visual representa-

tion learning. These models maximize the similarity be-

tween two augmentations of one image, subject to certain

conditions for avoiding collapsing solutions. In this paper,

we report surprising empirical results that simple Siamese
networks can learn meaningful representations even using

none of the following: (i) negative sample pairs, (ii) large

batches, (iii) momentum encoders. Our experiments show

that collapsing solutions do exist for the loss and structure,

but a stop-gradient operation plays an essential role in pre-

venting collapsing. We provide a hypothesis on the impli-

cation of stop-gradient, and further show proof-of-concept

experiments verifying it. Our “SimSiam” method achieves

competitive results on ImageNet and downstream tasks. We

hope this simple baseline will motivate people to rethink the

roles of Siamese architectures for unsupervised representa-

tion learning. Code will be made available.

1. Introduction
Recently there has been steady progress in un-/self-

supervised representation learning, with encouraging re-
sults on multiple visual tasks (e.g., [2, 17, 8, 15, 7]). Despite
various original motivations, these methods generally in-
volve certain forms of Siamese networks [4]. Siamese net-
works are weight-sharing neural networks applied on two or
more inputs. They are natural tools for comparing (includ-
ing but not limited to “contrasting”) entities. Recent meth-
ods define the inputs as two augmentations of one image,
and maximize the similarity subject to different conditions.

An undesired trivial solution to Siamese networks is
all outputs “collapsing” to a constant. There have been
several general strategies for preventing Siamese networks
from collapsing. Contrastive learning [16], e.g., instantiated
in SimCLR [8], repulses different images (negative pairs)
while attracting the same image’s two views (positive pairs).
The negative pairs preclude constant outputs from the solu-
tion space. Clustering [5] is another way of avoiding con-
stant output, and SwAV [7] incorporates online clustering
into Siamese networks. Beyond contrastive learning and
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Figure 1. SimSiam architecture. Two augmented views of one
image are processed by the same encoder network f (a backbone
plus a projection MLP). Then a prediction MLP h is applied on one
side, and a stop-gradient operation is applied on the other side. The
model maximizes the similarity between both sides. It uses neither
negative pairs nor a momentum encoder.

clustering, BYOL [15] relies only on positive pairs but it
does not collapse in case a momentum encoder is used.

In this paper, we report that simple Siamese networks
can work surprisingly well with none of the above strategies
for preventing collapsing. Our model directly maximizes
the similarity of one image’s two views, using neither neg-
ative pairs nor a momentum encoder. It works with typical
batch sizes and does not rely on large-batch training. We
illustrate this “SimSiam” method in Figure 1.

Thanks to the conceptual simplicity, SimSiam can serve
as a hub that relates several existing methods. In a nut-
shell, our method can be thought of as “BYOL without the
momentum encoder”. Unlike BYOL but like SimCLR and
SwAV, our method directly shares the weights between the
two branches, so it can also be thought of as “SimCLR
without negative pairs”, and “SwAV without online cluster-
ing”. Interestingly, SimSiam is related to each method by
removing one of its core components. Even so, SimSiam
does not cause collapsing and can perform competitively.

We empirically show that collapsing solutions do exist,
but a stop-gradient operation (Figure 1) is critical to pre-
vent such solutions. The importance of stop-gradient sug-
gests that there should be a different underlying optimiza-
tion problem that is being solved. We hypothesize that there
are implicitly two sets of variables, and SimSiam behaves
like alternating between optimizing each set. We provide
proof-of-concept experiments to verify this hypothesis.
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Our simple baseline suggests that the Siamese architec-
tures can be an essential reason for the common success
of the related methods. Siamese networks can naturally
introduce inductive biases for modeling invariance, as by
definition “invariance” means that two observations of the
same concept should produce the same outputs. Analo-
gous to convolutions [25], which is a successful inductive
bias via weight-sharing for modeling translation-invariance,
the weight-sharing Siamese networks can model invariance
w.r.t. more complicated transformations (e.g., augmenta-
tions). We hope our exploration will motivate people to
rethink the fundamental roles of Siamese architectures for
unsupervised representation learning.

2. Related Work
Siamese networks. Siamese networks [4] are general mod-
els for comparing entities. Their applications include sig-
nature [4] and face [34] verification, tracking [3], one-shot
learning [23], and others. In conventional use cases, the in-
puts to Siamese networks are from different images, and the
comparability is determined by supervision.

Contrastive learning. The core idea of contrastive learn-
ing [16] is to attract the positive sample pairs and repulse the
negative sample pairs. This methodology has been recently
popularized for un-/self-supervised representation learning
[36, 30, 20, 37, 21, 2, 35, 17, 29, 8, 9]. Simple and effective
instantiations of contrastive learning have been developed
using Siamese networks [37, 2, 17, 8, 9].

In practice, contrastive learning methods benefit from a
large number of negative samples [36, 35, 17, 8]. These
samples can be maintained in a memory bank [36]. In a
Siamese network, MoCo [17] maintains a queue of negative
samples and turns one branch into a momentum encoder
to improve consistency of the queue. SimCLR [8] directly
uses negative samples coexisting in the current batch, and it
requires a large batch size to work well.

Clustering. Another category of methods for unsupervised
representation learning are based on clustering [5, 6, 1, 7].
They alternate between clustering the representations and
learning to predict the cluster assignment. SwAV [7] incor-
porates clustering into a Siamese network, by computing
the assignment from one view and predicting it from an-
other view. SwAV performs online clustering under a bal-
anced partition constraint for each batch, which is solved by
the Sinkhorn-Knopp transform [10].

While clustering-based methods do not define negative
exemplars, the cluster centers can play as negative proto-
types. Like contrastive learning, clustering-based methods
require either a memory bank [5, 6, 1], large batches [7], or
a queue [7] to provide enough samples for clustering.

BYOL. BYOL [15] directly predicts the output of one view
from another view. It is a Siamese network in which one

Algorithm 1 SimSiam Pseudocode, PyTorch-like

# f: backbone + projection mlp

# h: prediction mlp

for x in loader: # load a minibatch x with n samples

x1, x2 = aug(x), aug(x) # random augmentation

z1, z2 = f(x1), f(x2) # projections, n-by-d

p1, p2 = h(z1), h(z2) # predictions, n-by-d

L = D(p1, z2)/2 + D(p2, z1)/2 # loss

L.backward() # back-propagate

update(f, h) # SGD update

def D(p, z): # negative cosine similarity

z = z.detach() # stop gradient

p = normalize(p, dim=1) # l2-normalize

z = normalize(z, dim=1) # l2-normalize

return -(p*z).sum(dim=1).mean()

branch is a momentum encoder.1 It is hypothesized in [15]
that the momentum encoder is important for BYOL to avoid
collapsing, and it reports failure results if removing the mo-
mentum encoder (0.3% accuracy, Table 5 in [15]).2 Our
empirical study challenges the necessity of the momentum
encoder for preventing collapsing. We discover that the
stop-gradient operation is critical. This discovery can be
obscured with the usage of a momentum encoder, which is
always accompanied with stop-gradient (as it is not updated
by its parameters’ gradients). While the moving-average
behavior may improve accuracy with an appropriate mo-
mentum coefficient, our experiments show that it is not di-
rectly related to preventing collapsing.

3. Method
Our architecture (Figure 1) takes as input two randomly

augmented views x1 and x2 from an image x. The two
views are processed by an encoder network f consisting of
a backbone (e.g., ResNet [19]) and a projection MLP head
[8]. The encoder f shares weights between the two views.
A prediction MLP head [15], denoted as h, transforms the
output of one view and matches it to the other view. Denot-
ing the two output vectors as p1,h(f(x1)) and z2,f(x2),
we minimize their negative cosine similarity:

D(p1, z2) = �
p1
kp1k2

· z2
kz2k2

, (1)

where k·k2 is `2-norm. This is equivalent to the mean
squared error of `2-normalized vectors [15], up to a scale

1MoCo [17] and BYOL [15] do not directly share the weights between
the two branches, though in theory the momentum encoder should con-
verge to the same status as the trainable encoder. We view these models as
Siamese networks with “indirect” weight-sharing.

2In BYOL’s arXiv v3 update, it reports 66.9% accuracy with 300-epoch
pre-training when removing the momentum encoder and increasing the
predictor’s learning rate by 10⇥. Our work was done concurrently with
this arXiv update. Our work studies this topic from different perspectives,
with better results achieved.
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Figure 2. SimSiam with vs. without stop-gradient. Left plot: training loss. Without stop-gradient it degenerates immediately. Middle
plot: the per-channel std of the `2-normalized output, plotted as the averaged std over all channels. Right plot: validation accuracy of a
kNN classifier [36] as a monitor of progress. Table: ImageNet linear evaluation (“w/ stop-grad” is mean±std over 5 trials).

of 2. Following [15], we define a symmetrized loss as:

L =
1

2
D(p1, z2) +

1

2
D(p2, z1). (2)

This is defined for each image, and the total loss is averaged
over all images. Its minimum possible value is �1.

An important component for our method to work is a
stop-gradient (stopgrad) operation (Figure 1). We im-
plement it by modifying (1) as:

D(p1,stopgrad(z2)). (3)

This means that z2 is treated as a constant in this term. Sim-
ilarly, the form in (2) is implemented as:

L=1

2
D(p1,stopgrad(z2))+

1

2
D(p2,stopgrad(z1)).

(4)
Here the encoder on x2 receives no gradient from z2 in the
first term, but it receives gradients from p2 in the second
term (and vice versa for x1).

The pseudo-code of SimSiam is in Algorithm 1.

Baseline settings. Unless specified, our explorations use
the following settings for unsupervised pre-training:

• Optimizer. We use SGD for pre-training. Our method
does not require a large-batch optimizer such as LARS
[38] (unlike [8, 15, 7]). We use a learning rate of
lr⇥BatchSize/256 (linear scaling [14]), with a base lr=
0.05. The learning rate has a cosine decay schedule
[27, 8]. The weight decay is 0.0001 and the SGD mo-
mentum is 0.9.
The batch size is 512 by default, which is friendly to typi-
cal 8-GPU implementations. Other batch sizes also work
well (Sec. 4.3). We use batch normalization (BN) [22]
synchronized across devices, following [8, 15, 7].

• Projection MLP. The projection MLP (in f ) has BN ap-
plied to each fully-connected (fc) layer, including its out-
put fc. Its output fc has no ReLU. The hidden fc is 2048-d.
This MLP has 3 layers.

• Prediction MLP. The prediction MLP (h) has BN applied
to its hidden fc layers. Its output fc does not have BN

(ablation in Sec. 4.4) or ReLU. This MLP has 2 layers.
The dimension of h’s input and output (z and p) is d =
2048, and h’s hidden layer’s dimension is 512, making h
a bottleneck structure (ablation in supplement).

We use ResNet-50 [19] as the default backbone. Other im-
plementation details are in supplement. We perform 100-
epoch pre-training in ablation experiments.

Experimental setup. We do unsupervised pre-training on
the 1000-class ImageNet training set [11] without using la-
bels. The quality of the pre-trained representations is evalu-
ated by training a supervised linear classifier on frozen rep-
resentations in the training set, and then testing it in the val-
idation set, which is a common protocol. The implementa-
tion details of linear classification are in supplement.

4. Empirical Study
In this section we empirically study the SimSiam behav-

iors. We pay special attention to what may contribute to the
model’s non-collapsing solutions.

4.1. Stop-gradient

Figure 2 presents a comparison on “with vs. without
stop-gradient”. The architectures and all hyper-parameters
are kept unchanged, and stop-gradient is the only difference.

Figure 2 (left) shows the training loss. Without stop-
gradient, the optimizer quickly finds a degenerated solution
and reaches the minimum possible loss of�1. To show that
the degeneration is caused by collapsing, we study the stan-
dard deviation (std) of the `2-normalized output z/kzk2. If
the outputs collapse to a constant vector, their std over all
samples should be zero for each channel. This can be ob-
served from the red curve in Figure 2 (middle).

As a comparison, if the output z has a zero-mean
isotropic Gaussian distribution, we can show that the std of
z/kzk2 is 1p

d
.3 The blue curve in Figure 2 (middle) shows

3Here is an informal derivation: denote z/kzk2 as z0, that is, z0i =

zi/(
Pd

j=1 z
2
j )

1
2 for the i-th channel. If zj is subject to an i.i.d Gaussian

distribution: zj ⇠N (0, 1), 8j, then z0i⇡zi/d
1
2 and std[z0i]⇡1/d

1
2 .
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pred. MLP h acc. (%)
baseline lr with cosine decay 67.7

(a) no pred. MLP 0.1
(b) fixed random init. 1.5
(c) lr not decayed 68.1

Table 1. Effect of prediction MLP (ImageNet linear evaluation
accuracy with 100-epoch pre-training). In all these variants, we
use the same schedule for the encoder f (lr with cosine decay).

that with stop-gradient, the std value is near 1p
d

. This indi-
cates that the outputs do not collapse, and they are scattered
on the unit hypersphere.

Figure 2 (right) plots the validation accuracy of a k-
nearest-neighbor (kNN) classifier [36]. This kNN classifier
can serve as a monitor of the progress. With stop-gradient,
the kNN monitor shows a steadily improving accuracy.

The linear evaluation result is in the table in Figure 2.
SimSiam achieves a nontrivial accuracy of 67.7%. This
result is reasonably stable as shown by the std of 5 trials.
Solely removing stop-gradient, the accuracy becomes 0.1%,
which is the chance-level guess in ImageNet.

Discussion. Our experiments show that there exist collaps-

ing solutions. The collapse can be observed by the mini-
mum possible loss and the constant outputs.4 The existence
of the collapsing solutions implies that it is insufficient for
our method to prevent collapsing solely by the architecture
designs (e.g., predictor, BN, `2-norm). In our comparison,
all these architecture designs are kept unchanged, but they
do not prevent collapsing if stop-gradient is removed.

The introduction of stop-gradient implies that there
should be another optimization problem that is being solved
underlying. We propose a hypothesis in Sec. 5.

4.2. Predictor
In Table 1 we study the predictor MLP’s effect.
The model does not work if removing h (Table 1a), i.e.,

h is the identity mapping. Actually, this observation can
be expected if the symmetric loss (4) is used. Now the loss
is 1

2D(z1,stopgrad(z2)) +
1
2D(z2,stopgrad(z1)). Its

gradient has the same direction as the gradient of D(z1, z2),
with the magnitude scaled by 1/2. In this case, using stop-
gradient is equivalent to removing stop-gradient and scaling
the loss by 1/2. Collapsing is observed (Table 1a).

We note that this derivation on the gradient direction is
valid only for the symmetrized loss. But we have observed
that the asymmetric variant (3) also fails if removing h,
while it can work if h is kept (Sec. 4.6). These experiments
suggest that h is helpful for our model.

If h is fixed as random initialization, our model does not
work either (Table 1b). However, this failure is not about

4We note that a chance-level accuracy (0.1%) is not sufficient to indi-
cate collapsing. A model with a diverging loss, which is another pattern of
failure, may also exhibit a chance-level accuracy.

batch size 64 128 256 512 1024 2048 4096
acc. (%) 66.1 67.3 68.1 68.1 68.0 67.9 64.0

Table 2. Effect of batch sizes (ImageNet linear evaluation accu-
racy with 100-epoch pre-training).

proj. MLP’s BN pred. MLP’s BN
case hidden output hidden output acc. (%)

(a) none - - - - 34.6
(b) hidden-only X - X - 67.4
(c) default X X X - 68.1
(d) all X X X X unstable

Table 3. Effect of batch normalization on MLP heads (Ima-
geNet linear evaluation accuracy with 100-epoch pre-training).

collapsing. The training does not converge, and the loss
remains high. The predictor h should be trained to adapt to
the representations.

We also find that h with a constant lr (without decay) can
work well and produce even better results than the baseline
(Table 1c). A possible explanation is that h should adapt
to the latest representations, so it is not necessary to force
it converge (by reducing lr) before the representations are
sufficiently trained. In many variants of our model, we have
observed that h with a constant lr provides slightly better
results. We use this form in the following subsections.

4.3. Batch Size
Table 2 reports the results with a batch size from 64 to

4096. When the batch size changes, we use the same linear
scaling rule (lr⇥BatchSize/256) [14] with base lr = 0.05.
We use 10 epochs of warm-up [14] for batch sizes �1024.
Note that we keep using the same SGD optimizer (rather
than LARS [38]) for all batch sizes studied.

Our method works reasonably well over this wide range
of batch sizes. Even a batch size of 128 or 64 performs de-
cently, with a drop of 0.8% or 2.0% in accuracy. The results
are similarly good when the batch size is from 256 to 2048,
and the differences are at the level of random variations.

This behavior of SimSiam is noticeably different from
SimCLR [8] and SwAV [7]. All three methods are Siamese
networks with direct weight-sharing, but SimCLR and
SwAV both require a large batch (e.g., 4096) to work well.

We also note that the standard SGD optimizer does not
work well when the batch is too large (even in supervised
learning [14, 38]), and our result is lower with a 4096 batch.
We expect a specialized optimizer (e.g., LARS [38]) will
help in this case. However, our results show that a special-
ized optimizer is not necessary for preventing collapsing.

4.4. Batch Normalization
Table 3 compares the configurations of BN on the MLP

heads. In Table 3a we remove all BN layers in the MLP
heads (10-epoch warmup [14] is used specifically for this

4



entry). This variant does not cause collapse, although the
accuracy is low (34.6%). The low accuracy is likely because
of optimization difficulty. Adding BN to the hidden layers
(Table 3b) increases accuracy to 67.4%.

Further adding BN to the output of the projection MLP
(i.e., the output of f ) boosts accuracy to 68.1% (Table 3c),
which is our default configuration. In this entry, we also
find that the learnable affine transformation (scale and off-
set [22]) in f ’s output BN is not necessary, and disabling it
leads to a comparable accuracy of 68.2%.

Adding BN to the output of the prediction MLP h does
not work well (Table 3d). We find that this is not about
collapsing. The training is unstable and the loss oscillates.

In summary, we observe that BN is helpful for optimiza-
tion when used appropriately, which is similar to BN’s be-
havior in other supervised learning scenarios. But we have
seen no evidence that BN helps to prevent collapsing: actu-
ally, the comparison in Sec. 4.1 (Figure 2) has exactly the
same BN configuration for both entries, but the model col-
lapses if stop-gradient is not used.

4.5. Similarity Function
Besides the cosine similarity function (1), our method

also works with cross-entropy similarity. We modify D as:
D(p1, z2) =�softmax(z2)· log softmax(p1). Here the
softmax function is along the channel dimension. The out-
put of softmax can be thought of as the probabilities of be-
longing to each of d pseudo-categories.

We simply replace the cosine similarity with the cross-
entropy similarity, and symmetrize it using (4). All hyper-
parameters and architectures are unchanged, though they
may be suboptimal for this variant. Here is the comparison:

cosine cross-entropy
acc. (%) 68.1 63.2

The cross-entropy variant can converge to a reasonable re-
sult without collapsing. This suggests that the collapsing
prevention behavior is not just about the cosine similarity.

This variant helps to set up a connection to SwAV [7],
which we discuss in Sec. 6.2.

4.6. Symmetrization
Thus far our experiments have been based on the sym-

metrized loss (4). We observe that SimSiam’s behavior of
preventing collapsing does not depend on symmetrization.
We compare with the asymmetric variant (3) as follows:

sym. asym. asym. 2⇥
acc. (%) 68.1 64.8 67.3

The asymmetric variant achieves reasonable results. Sym-
metrization is helpful for boosting accuracy, but it is not
related to collapse prevention. Symmetrization makes one
more prediction for each image, and we may roughly com-
pensate for this by sampling two pairs for each image in the
asymmetric version (“2⇥”). It makes the gap smaller.

4.7. Summary
We have empirically shown that in a variety of settings,

SimSiam can produce meaningful results without collaps-
ing. The optimizer (batch size), batch normalization, sim-
ilarity function, and symmetrization may affect accuracy,
but we have seen no evidence that they are related to col-
lapse prevention. It is mainly the stop-gradient operation
that plays an essential role.

5. Hypothesis
We discuss a hypothesis on what is implicitly optimized

by SimSiam, with proof-of-concept experiments provided.

5.1. Formulation
Our hypothesis is that SimSiam is an implementation of

an Expectation-Maximization (EM) like algorithm. It im-
plicitly involves two sets of variables, and solves two un-
derlying sub-problems. The presence of stop-gradient is the
consequence of introducing the extra set of variables.

We consider a loss function of the following form:

L(✓, ⌘) = Ex,T

h��F✓(T (x))� ⌘x
��2
2

i
. (5)

F is a network parameterized by ✓. T is the augmentation.
x is an image. The expectation E[·] is over the distribution
of images and augmentations. For the ease of analysis, here
we use the mean squared error k · k22, which is equivalent
to the cosine similarity if the vectors are `2-normalized. We
do not consider the predictor yet and will discuss it later.

In (5), we have introduced another set of variables which
we denote as ⌘. The size of ⌘ is proportional to the number
of images. Intuitively, ⌘x is the representation of the image
x, and the subscript x means using the image index to ac-
cess a sub-vector of ⌘. ⌘ is not necessarily the output of a
network; it is the argument of an optimization problem.

With this formulation, we consider solving:

min
✓,⌘

L(✓, ⌘). (6)

Here the problem is w.r.t. both ✓ and ⌘. This formulation
is analogous to k-means clustering [28]. The variable ✓ is
analogous to the clustering centers: it is the learnable pa-
rameters of an encoder. The variable ⌘x is analogous to the
assignment vector of the sample x (a one-hot vector in k-
means): it is the representation of x.

Also analogous to k-means, the problem in (6) can be
solved by an alternating algorithm, fixing one set of vari-
ables and solving for the other set. Formally, we can alter-
nate between solving these two subproblems:

✓t  argmin
✓

L(✓, ⌘t�1) (7)

⌘t  argmin
⌘

L(✓t, ⌘) (8)

Here t is the index of alternation and “ ” means assigning.

5



Solving for ✓. One can use SGD to solve the sub-problem
(7). The stop-gradient operation is a natural consequence,
because the gradient does not back-propagate to ⌘t�1 which
is a constant in this subproblem.

Solving for ⌘. The sub-problem (8) can be solved inde-
pendently for each ⌘x. Now the problem is to minimize:
ET

h
kF✓t(T (x))� ⌘xk22

i
for each image x, noting that the

expectation is over the distribution of augmentation T . Due
to the mean squared error,5 it is easy to solve it by:

⌘tx  ET

h
F✓t(T (x))

i
. (9)

This indicates that ⌘x is assigned with the average repre-
sentation of x over the distribution of augmentation.

One-step alternation. SimSiam can be approximated by
one-step alternation between (7) and (8). First, we approxi-
mate (9) by sampling the augmentation only once, denoted
as T 0, and ignoring ET [·]:

⌘tx  F✓t(T 0(x)). (10)

Inserting it into the sub-problem (7), we have:

✓t+1  argmin
✓

Ex,T

h��F✓(T (x))� F✓t(T 0(x))
��2
2

i
.

(11)

Now ✓t is a constant in this sub-problem, and T 0 implies
another view due to its random nature. This formulation ex-
hibits the Siamese architecture. Second, if we implement
(11) by reducing the loss with one SGD step, then we can
approach the SimSiam algorithm: a Siamese network natu-
rally with stop-gradient applied.

Predictor. Our above analysis does not involve the predic-
tor h. We further assume that h is helpful in our method
because of the approximation due to (10).

By definition, the predictor h is expected to minimize:
Ez

h��h(z1) � z2
��2
2

i
. The optimal solution to h should sat-

isfy: h(z1)=Ez[z2]=ET
⇥
f(T (x))

⇤
for any image x. This

term is similar to the one in (9). In our approximation in
(10), the expectation ET [·] is ignored. The usage of h may
fill this gap. In practice, it would be unrealistic to actu-
ally compute the expectation ET . But it may be possible
for a neural network (e.g., the preditor h) to learn to pre-
dict the expectation, while the sampling of T is implicitly
distributed across multiple epochs.

5If we use the cosine similarity, we can approximately solve it by `2-
normalizing F ’s output and ⌘x.

Symmetrization. Our hypothesis does not involve sym-
metrization. Symmetrization is like denser sampling T in
(11). Actually, the SGD optimizer computes the empiri-
cal expectation of Ex,T [·] by sampling a batch of images
and one pair of augmentations (T1, T2). In principle, the
empirical expectation should be more precise with denser
sampling. Symmetrization supplies an extra pair (T2, T1).
This explains that symmetrization is not necessary for our
method to work, yet it is able to improve accuracy, as we
have observed in Sec. 4.6.

5.2. Proof of concept
We design a series of proof-of-concept experiments that

stem from our hypothesis. They are methods different with
SimSiam, and they are designed to verify our hypothesis.

Multi-step alternation. We have hypothesized that the
SimSiam algorithm is like alternating between (7) and (8),
with an interval of one step of SGD update. Under this hy-
pothesis, it is likely for our formulation to work if the inter-
val has multiple steps of SGD.

In this variant, we treat t in (7) and (8) as the index
of an outer loop; and the sub-problem in (7) is updated
by an inner loop of k SGD steps. In each alternation,
we pre-compute the ⌘x required for all k SGD steps using
(10) and cache them in memory. Then we perform k SGD
steps to update ✓. We use the same architecture and hyper-
parameters as SimSiam. The comparison is as follows:

1-step 10-step 100-step 1-epoch
acc. (%) 68.1 68.7 68.9 67.0

Here, “1-step” is equivalent to SimSiam, and “1-epoch” de-
notes the k steps required for one epoch. All multi-step
variants work well. The 10-/100-step variants even achieve
better results than SimSiam, though at the cost of extra pre-
computation. This experiment suggests that the alternating
optimization is a valid formulation, and SimSiam is a spe-
cial case of it.

Expectation over augmentations. The usage of the pre-
dictor h is presumably because the expectation ET [·] in (9)
is ignored. We consider another way to approximate this
expectation, in which we find h is not needed.

In this variant, we do not update ⌘x directly by the
assignment (10); instead, we maintain a moving-average:
⌘tx  m ⇤ ⌘t�1

x + (1�m) ⇤F✓t(T 0(x)), where m is a mo-
mentum coefficient (0.8 here). This computation is similar
to maintaining the memory bank as in [36]. This moving-
average provides an approximated expectation of multiple
views. This variant has 55.0% accuracy without the predic-
tor h. As a comparison, it fails completely if we remove h
but do not maintain the moving average (as shown in Ta-
ble 1a). This proof-of-concept experiment supports that the
usage of predictor h is related to approximating ET [·].
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method batch
size

negative
pairs

momentum
encoder 100 ep 200 ep 400 ep 800 ep

SimCLR (repro.+) 4096 X 66.5 68.3 69.8 70.4
MoCo v2 (repro.+) 256 X X 67.4 69.9 71.0 72.2
BYOL (repro.) 4096 X 66.5 70.6 73.2 74.3
SwAV (repro.+) 4096 66.5 69.1 70.7 71.8
SimSiam 256 68.1 70.0 70.8 71.3

Table 4. Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with two 224⇥224 views. Evaluation
is on a single crop. All competitors are from our reproduction, and “+” denotes improved reproduction vs. original papers (see supplement).

VOC 07 detection VOC 07+12 detection COCO detection COCO instance seg.
pre-train AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APmask

50 APmask APmask
75

scratch 35.9 16.8 13.0 60.2 33.8 33.1 44.0 26.4 27.8 46.9 29.3 30.8
ImageNet supervised 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2
SimCLR (repro.+) 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 (repro.+) 77.1 48.5 52.5 82.3 57.0 63.3 58.8 39.2 42.5 55.5 34.3 36.6
BYOL (repro.) 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SwAV (repro.+) 75.5 46.5 49.6 81.5 55.4 61.4 57.6 37.6 40.3 54.2 33.1 35.1
SimSiam, base 75.5 47.0 50.2 82.0 56.4 62.8 57.5 37.9 40.9 54.2 33.2 35.2
SimSiam, optimal 77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7

Table 5. Transfer Learning. All unsupervised methods are based on 200-epoch pre-training in ImageNet. VOC 07 detection: Faster
R-CNN [32] fine-tuned in VOC 2007 trainval, evaluated in VOC 2007 test; VOC 07+12 detection: Faster R-CNN fine-tuned in VOC 2007
trainval + 2012 train, evaluated in VOC 2007 test; COCO detection and COCO instance segmentation: Mask R-CNN [18] (1⇥ schedule)
fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. All Faster/Mask R-CNN models are with the C4-backbone [13]. All VOC
results are the average over 5 trials. Bold entries are within 0.5 below the best.

5.3. Discussion
Our hypothesis is about what the optimization problem

can be. It does not explain why collapsing is prevented.
We point out that SimSiam and its variants’ non-collapsing
behavior still remains as an empirical observation.

Here we briefly discuss our understanding on this open
question. The alternating optimization provides a different
trajectory, and the trajectory depends on the initialization.
It is unlikely that the initialized ⌘, which is the output of a
randomly initialized network, would be a constant. Starting
from this initialization, it may be difficult for the alternating
optimizer to approach a constant ⌘x for all x, because the
method does not compute the gradients w.r.t. ⌘ jointly for
all x. The optimizer seeks another trajectory (Figure 2 left),
in which the outputs are scattered (Figure 2 middle).

6. Comparisons
6.1. Result Comparisons
ImageNet. We compare with the state-of-the-art frame-
works in Table 4 on ImageNet linear evaluation. For fair
comparisons, all competitors are based on our reproduc-
tion, and “+” denotes improved reproduction vs. the original
papers (see supplement). For each individual method, we
follow the hyper-parameter and augmentation recipes in its
original paper.6 All entries are based on a standard ResNet-
50, with two 224⇥224 views used during pre-training.

6In our BYOL reproduction, the 100, 200(400), 800-epoch recipes fol-
low the 100, 300, 1000-epoch recipes in [15]: lr is {0.45, 0.3, 0.2}, wd is
{1e-6, 1e-6, 1.5e-6}, and momentum coefficient is {0.99, 0.99, 0.996}.

Table 4 shows the results and the main properties of the
methods. SimSiam is trained with a batch size of 256, using
neither negative samples nor a momentum encoder. Despite
it simplicity, SimSiam achieves competitive results. It has
the highest accuracy among all methods under 100-epoch
pre-training, though its gain of training longer is smaller. It
has better results than SimCLR in all cases.

Transfer Learning. In Table 5 we compare the represen-
tation quality by transferring them to other tasks, includ-
ing VOC [12] object detection and COCO [26] object de-
tection and instance segmentation. We fine-tune the pre-
trained models end-to-end in the target datasets. We use the
public codebase from MoCo [17] for all entries, and search
the fine-tuning learning rate for each individual method. All
methods are based on 200-epoch pre-training in ImageNet
using our reproduction.

Table 5 shows that SimSiam’s representations are trans-

ferable beyond the ImageNet task. It is competitive among
these leading methods. The “base” SimSiam in Table 5 uses
the baseline pre-training recipe as in our ImageNet experi-
ments. We find that another recipe of lr=0.5 and wd=1e-5
(with similar ImageNet accuracy) can produce better results
in all tasks (Table 5, “SimSiam, optimal”).

We emphasize that all these methods are highly success-

ful for transfer learning—in Table 5, they can surpass or
be on par with the ImageNet supervised pre-training coun-
terparts in all tasks. Despite many design differences, a
common structure of these methods is the Siamese network.
This comparison suggests that the Siamese structure is a
core factor for their general success.
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6.2. Methodology Comparisons
Beyond accuracy, we also compare the methodologies of

these Siamese architectures. Our method plays as a hub to
connect these methods. Figure 3 abstracts these methods.
The “encoder” subsumes all layers that can be shared be-
tween both branches (e.g., backbone, projection MLP [8],
prototypes [7]). The components in red are those missing in
SimSiam. We discuss the relations next.

Relation to SimCLR [8]. SimCLR relies on negative sam-
ples (“dissimilarity”) to prevent collapsing. SimSiam can be
thought of as “SimCLR without negatives”.

To have a more thorough comparison, we append the
prediction MLP h and stop-gradient to SimCLR.7 Here is
the ablation on our SimCLR reproduction:

SimCLR w/ predictor w/ pred. & stop-grad
66.5 66.4 66.0

Neither the stop-gradient nor the extra predictor is neces-
sary or helpful for SimCLR. As we have analyzed in Sec. 5,
the introduction of the stop-gradient and extra predictor is
presumably a consequence of another underlying optimiza-
tion problem. It is different from the contrastive learning
problem, so these extra components may not be helpful.

Relation to SwAV [7]. SimSiam is conceptually analogous
to “SwAV without online clustering”. We build up this
connection by recasting a few components in SwAV. (i)
The shared prototype layer in SwAV can be absorbed
into the Siamese encoder. (ii) The prototypes were
weight-normalized outside of gradient propagation in [7];
we instead implement by full gradient computation [33].8
(iii) The similarity function in SwAV is cross-entropy. With
these abstractions, a highly simplified SwAV illustration is
shown in Figure 3.

SwAV applies the Sinkhorn-Knopp (SK) transform [10]
on the target branch (which is also symmetrized [7]). The
SK transform is derived from online clustering [7]: it is
the outcome of clustering the current batch subject to a bal-
anced partition constraint. The balanced partition can avoid
collapsing. Our method does not involve this transform.

We study the effect of the prediction MLP h and stop-
gradient on SwAV. Note that SwAV applies stop-gradient
on the SK transform, so we ablate by removing it. Here is
the comparison on our SwAV reproduction:

SwAV w/ predictor remove stop-grad
66.5 65.2 NaN

Adding the predictor does not help either. Removing stop-
gradient (so the model is trained end-to-end) leads to diver-
gence. As a clustering-based method, SwAV is inherently

7We append the extra predictor to one branch and stop-gradient to the
other branch, and symmetrize this by swapping.

8This modification produces similar results as original SwAV, but it can
enable end-to-end propagation in our ablation.

encoder

similarity

encoder

predictor

image

SimSiam

encoder

similarity &
dissimilarity

encoder

image

SimCLR

encoder

similarity

encoder

Sinkhorn-Knopp

image

SwAV

encoder

similarity

momentum
encoder

predictor

image

moving
average

BYOL

grad grad

grad grad

grad

Figure 3. Comparison on Siamese architectures. The en-
coder includes all layers that can be shared between both branches.
The dash lines indicate the gradient propagation flow. In BYOL,
SwAV, and SimSiam, the lack of a dash line implies stop-gradient,
and their symmetrization is not illustrated for simplicity. The com-
ponents in red are those missing in SimSiam.

an alternating formulation [7]. This may explain why stop-
gradient should not be removed from SwAV.

Relation to BYOL [15]. Our method can be thought of as
“BYOL without the momentum encoder”, subject to many
implementation differences. The momentum encoder may
be beneficial for accuracy (Table 4), but it is not necessary
for preventing collapsing. Given our hypothesis in Sec. 5,
the ⌘ sub-problem (8) can be solved by other optimizers,
e.g., a gradient-based one. This may lead to a temporally
smoother update on ⌘. Although not directly related, the
momentum encoder also produces a smoother version of
⌘. We believe that other optimizers for solving (8) are also
plausible, which can be a future research problem.

7. Conclusion
We have explored Siamese networks with simple de-

signs. The competitiveness of our minimalist method sug-
gests that the Siamese shape of the recent methods can be
a core reason for their effectiveness. Siamese networks are
natural and effective tools for modeling invariance, which is
a focus of representation learning. We hope our study will
attract the community’s attention to the fundamental role of
Siamese networks in representation learning.
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A. Implementation Details
Unsupervised pre-training. Our implementation follows
the practice of existing works [36, 17, 8, 9, 15].

Data augmentation. We describe data augmentation
using the PyTorch [31] notations. Geometric augmen-
tation is RandomResizedCrop with scale in [0.2, 1.0]
[36] and RandomHorizontalFlip. Color augmenta-
tion is ColorJitter with {brightness, contrast, satura-
tion, hue} strength of {0.4, 0.4, 0.4, 0.1} with an applying
probability of 0.8, and RandomGrayscale with an ap-
plying probability of 0.2. Blurring augmentation [8] has a
Gaussian kernel with std in [0.1, 2.0].

Initialization. The convolution and fc layers follow the
default PyTorch initializers. Note that by default PyTorch
initializes fc layers’ weight and bias by a uniform distribu-
tion U(�

p
k,
p
k) where k= 1

in channels . Models with sub-
stantially different fc initializers (e.g., a fixed std of 0.01)
may not converge. Moreover, similar to the implementation
of [8], we initialize the scale parameters as 0 [14] in the last
BN layer for every residual block.

Weight decay. We use a weight decay of 0.0001 for all
parameter layers, including the BN scales and biases, in the
SGD optimizer. This is in contrast to the implementation
of [8, 15] that excludes BN scales and biases from weight
decay in their LARS optimizer.

Linear evaluation. Given the pre-trained network, we
train a supervised linear classifier on frozen features, which
are from ResNet’s global average pooling layer (pool5).
The linear classifier training uses base lr = 0.02 with a
cosine decay schedule for 90 epochs, weight decay = 0,
momentum=0.9, batch size=4096 with a LARS optimizer
[38]. We have also tried the SGD optimizer following [17]
with base lr = 30.0, weight decay= 0, momentum= 0.9,
and batch size=256, which gives ⇠1% lower accuracy. Af-
ter training the linear classifier, we evaluate it on the center
224⇥224 crop in the validation set.

B. Additional Ablations on ImageNet
The following table reports the SimSiam results vs. the

output dimension d:

output d 256 512 1024 2048
acc. (%) 65.3 67.2 67.5 68.1

It benefits from a larger d and gets saturated at d = 2048.
This is unlike existing methods [36, 17, 8, 15] whose accu-
racy is saturated when d is 256 or 512.

In this table, the prediction MLP’s hidden layer dimen-
sion is always 1/4 of the output dimension. We find that this
bottleneck structure is more robust. If we set the hidden
dimension to be equal to the output dimension, the train-
ing can be less stable or fail in some variants of our explo-
ration. We hypothesize that this bottleneck structure, which

SimCLR MoCo v2 BYOL SwAV
epoch 200 800 1000 200 800 300 800 1000 400
origin 66.6 68.3 69.3 67.5 71.1 72.5 - 74.3 70.1
repro. 68.3 70.4 - 69.9 72.2 72.4 74.3 - 70.7

Table C.1. Our reproduction vs. original papers’ results. All
are based on ResNet-50 pre-trained with two 224⇥224 crops.

behaves like an auto-encoder, can force the predictor to di-
gest the information. We recommend to use this bottleneck
structure for our method.

C. Reproducing Related Methods
Our comparison in Table 4 is based on our reproduction

of the related methods. We re-implement the related meth-
ods as faithfully as possible following each individual paper.
In addition, we are able to improve SimCLR, MoCo v2, and
SwAV by small and straightforward modifications: specif-
ically, we use 3 layers in the projection MLP in SimCLR
and SwAV (vs. originally 2), and use symmetrized loss for
MoCo v2 (vs. originally asymmetric). Table C.1 compares
our reproduction of these methods with the original papers’
results (if available). Our reproduction has better results for
SimCLR, MoCo v2, and SwAV (denoted as “+” in Table 4),
and has at least comparable results for BYOL.

D. CIFAR Experiments
We have observed similar behaviors of SimSiam in the

CIFAR-10 dataset [24]. The implementation is similar to
that in ImageNet. We use SGD with base lr = 0.03 and
a cosine decay schedule for 800 epochs, weight decay =
0.0005, momentum=0.9, and batch size=512. The input
image size is 32⇥32. We do not use blur augmentation. The
backbone is the CIFAR variant of ResNet-18 [19], followed
by a 2-layer projection MLP. The outputs are 2048-d.

Figure D.1 shows the kNN classification accuracy (left)
and the linear evaluation (right). Similar to the ImageNet
observations, SimSiam achieves a reasonable result and
does not collapse. We compare with SimCLR [8] trained
with the same setting. Interestingly, the training curves are
similar between SimSiam and SimCLR. SimSiam is slightly
better by 0.7% under this setting.

0 800
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SimSiam
SimCLR

acc. (%)
SimCLR 91.1
SimSiam 91.8

Figure D.1. CIFAR-10 experiments. Left: validation accuracy of
kNN classification as a monitor during pre-training. Right: linear
evaluation accuracy. The backbone is ResNet-18.
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