Introduction to Approximation Algorithms, part |

20-12 2022, Mikkel Abrahamsen,
Department of Computer Science

APPROX-VERTEX-COVER(G)
C:=0
while E(G) # 0
choose uv € E(G)
C:=CU{u,v}
remove all edges incident on u or v from E(G)
return C

he big picture

Last time: Fast exponential algorithms (good for small
instances) and parameterized algorithms (good for special
cases).

he big picture

Last time: Fast exponential algorithms (good for small
instances) and parameterized algorithms (good for special

cases).

Today: Approximation algorithms (good when suboptimal
solutions are acceptable).

Definition

Def.: An algorithm for an optimization problem has
approximation ratio p(n) if for every input of size n,

max ¢ ¢ < p(n)
c< ¢ [=PV

Definition

Def.: An algorithm for an optimization problem has
approximation ratio p(n) if for every input of size n,

L) s
max p(n).
C'* :=cost(opt. sol.)/‘ ‘\C :=cost(produced sol.)

Definition

Def.: An algorithm for an optimization problem has
approximation ratio p(n) if for every input of size n,

max e < p(n)
crif =

C* :=cost(opt. sol.)/ \C :=cost(produced sol.)

|
AN

gur SIwi™ 2\

Vertex Cover

Def.: Let G = (V, E) be a graph. A set V' C V of vertices is
a vertex cover if for all uv € E, we have u € V' orv € V',

Vertex Cover

Def.: Let G = (V, E) be a graph. A set V' C V of vertices is
a vertex cover if for all uv € E, we have u € V' orv € V',

NP-hard!

Vertex Cover

Def.: Let G = (V, E) be a graph. A set V' C V of vertices is
a vertex cover if for all uv € E, we have u € V' orv € V',

NP-hard!
APPROX-VERTEX-COVER(G)
C:=10
while E(G) # 0
choose uv € E(G)
C:=CUA{u,v}
remove all edges incident on u or v from E(G)
return C

Vertex Cover

Def.: Let G = (V, E) be a graph. A set V' C V of vertices is
a vertex cover if for all uv € E, we have u € V' orv € V',

NP-hard!
APPROX-VERTEX-COVER(G)
C:=10
while E(G) # 0
choose uv € E(G)
C:=CUA{u,v}
remove all edges incident on u or v from E(G)

return C
Exercise: 7

O;ia,b,o,d,eaﬂb' %%
X 4

as c&—y—ef g

Implementation

Adjacency lists:

o] = (b}
L|b] = {a,c}

Lic] = {b,d, e}

Implementation

he 2 ¢ 3 d Adjacency lists:
. Lla] = {b} Ela] = (1]

Lb) ={a,c} FE[b] =11,

Lic] ={b,d,e} E|c] =[2,3,4]

Array of edges
(a,b,1), (b,c,1), (¢,d,1), (c,e,1),(d,e, 1), ...]

Implementation

he 2 ¢ 3 d Adjacency lists:
. Lla] = {b} Ela] = (1]

Lb) ={a,c} FE[b] =11,

Lic] ={b,d,e} E|c] =[2,3,4]

Array of edges

(a,b,1), (b,c,1), (c,d,1), (c,e,1), (d,e, 1), ...]

Implementation

3 d Adjacency lists:

bl " /\ Lia = {b} — Blal = [1]

1 4 6 \J Lb] = {a,c} E[b] =[1,2]
a e —g—of g Lle] = {b,d,e} Bld = 2,3, 4
Array of edge///y

(a,b,1), (b,c,1), (¢,d,1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (c,d,1), (c,e,1),(d,e, 1), ...]

Implementation

3 d Adjacency lists:

bl " /\ Lia = {b} — Blal = [1]

1 4 6 \J Lb] = {a,c} E[b] =[1,2]
a e —g—of g Lle] = {b,d,e} Bld = 2,3, 4
Array of edge/y

(a,b,1), (b,c,1), (¢,d,1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (¢,d,1), (c,e,1), (d,e, 1), ...]

Implementation

Adjacency lists:

be— S 34 _ |

Lla] = {b} FEla] = [1]
1[X ;()6 Y L ={ac) Eb=[12]
a o S of p Lic] = {b,d,e} FElc| = [2,3,4]
Array of edge/y

(a,b,1), (b,c,1), (c,d, 1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (c,d, 1), (c,e, 1), (d,e, 1), ...]
(a,b,0), (b,¢c,0), (c,d,0), (c,e,0), (d,e,0), ...]

Implementation

Adjacency lists:

be— S 34 _ |
Llal ={b} Ela] =[1]
1I X XX\ Lb| ={a,c} E[b] = (1,2
a . f p Lic] = {b,d,e} FElc| = [2,3,4]
Array of edge/y

(a,b,1), (b,c,1), (c,d, 1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (c,d, 1), (c,e, 1), (d,e, 1), ...]
(a,b,0), (b,¢c,0), (c,d,0), (c,e,0), (d,e,0), ...]

Implementation

bl X c 3 d Adjacency lists:

Lia] = {b} Fla] =
X x 1/ Lb] = {a,c} Eb]=11,2]

: f
Array of edge/

(a,b,1), (b,c,1), (c,d, 1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (c,d, 1), (c,e, 1), (d,e, 1), ...]
(a,b,0), (b,¢c,0), (c,d,0), (c,e,0), (d,e,0), ...]

Running time: O(|V| + |E])
N e sine 4+ 7”‘1””

heorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

heorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C* be an optimal cover.
Let A C E be the edges chosen by the algorithm.

heorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C* be an optimal cover.
Let A C E be the edges chosen by the algorithm.

An endpoint of each
uv € A must be in C*.

heorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C* be an optimal cover.
Let@c E be the edges chosen by the algorithm.

Sinee i s a0V,

An endpoint of each
uv € A must be in C*.

Hence,

AT in &, wehovo a 7 [T T

Refléction and methodol e m e
ion and methodology i T

How can we prove C'/C* < 2 when we don't know C*?

Answer: By proving C' < 2|A| and |A| < C*.

Reflection and methodology

How can we prove C'/C* < 2 when we don't know C*?

Answer: By proving C' < 2|A| and |A| < C*.

General technique: Find a parameter [such that C' < p-
and L < C*.

For vertex cover: [1= |A| and p = 2.

Question

Try to guess: |Is there an approximation algorithm with a
better approximation ratio?

History

1972: Karp's 21 NP-complete problems
(including vertex cover, set cover, Hamiltonian cycle and
subset sum)

Turing Award

ACM
A M. TURING AWARD

Karp

History

19xx: Many < 2 —o(1).

Gavril Yannakakis

History

Assuming P#£NP:

1999: Hastad, > 7/6

2005: Dinur & Safra, > 1.38
2018: Khot, Minzer, Safra, > 1.41

Hastad Dinur

History

2008: Khot & Regev, > 2 — ¢ assuming the

Unique Game Conjecture

V\Some, but not all people believe it.

raveling Salesperson
Given a complete undirected graph G = (V, E).
For all u,v € V, we are given c(uv) € {0,1,...}.

Goal: Find minimum weight cycle through all vertices.

raveling Salesperson
Given a complete undirected graph G = (V, E).
For all u,v € V, we are given c(uv) € {0,1,...}.
Goal: Find minimum weight cycle through all vertices.

Assume: Triangle inequality: c(uw) < c(uv) + c(vw).

raveling Salesperson
Given a complete undirected graph G = (V, E).
For all u,v € V, we are given c(uv) € {0,1,...}.
Goal: Find minimum weight cycle through all vertices.

Assume: Triangle inequality: c(uw) < c(uv) + c(vw).

Still NP-hard!

Algorithm

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Algorithm

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Algorithm

APPROX-TSP(G, c)
Find MST)T
Make Euler tour W using each edge of T" twice

Shortcut W to
Return H

skipping duplicates

T

Algorithm

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice
Shortcut W to H by skipping duplicates

Return H———

Algorithm

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice
Shortcut W to H by skipping duplicates

Return H
~ /

Algorithm

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

T Exercise: Run the algorithm
on this instance.

LIS
S
—

» V4

heorem

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.

T

heorem

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a

~ POy -approx. alg

Proof: Poly-time?
Let H* be an opt. sol.

heorem

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* be an opt. sol.

PpuAni .
&V*&%ZKT QH*% The covv af oWy irev iy & me

the oyt oF The opdinal Tsr

WINRLE T LV 3e gt -
heorem 140 w1 wMATS

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* befn opt. sol.

We can (omputy the minimwm Sf”'m”j
Trev with Prims Aljm‘ﬂm\) which
C(T) S C(H*) 9 V”’j vf‘fl‘ciowt and Thon we o
M Ih< QW/W that /‘M‘t nﬁ&d

lﬂ\]}@C(W) — QC(T) Jv repess ther dyor while rrm:z

the frev . When we Gompric W, we |
newd F“/f Travk of windh verwiies

/’WI{/WW on barré amd shen
5#.7 These. -,-‘7 /)’/j”""'““'f Time,

heorem

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* be an opt. sol.

heorem

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* be an opt. sol.

) =2¢(T)|[=— c¢(H) < 2¢(H*)

Reflection and methodology
How can we prove ¢(H)/c(H*) < 2 when we don't know H*?

Answer: By proving ¢(H) < 2¢(T') and ¢(T) < c(H™).

Reflection and methodology
How can we prove ¢(H)/c(H*) < 2 when we don't know H*?

Answer: By proving ¢(H) < 2¢(T') and ¢(T) < c(H™).

General technique: Find a parameter [such that C' < p-
and L < C*.

For TSP: = ¢(T') and p = 2.

Question

Try to guess: |Is there an approximation algorithm with a
better approximation ratio?

History

1976: Christofides, Serdyukov, 1.5-apx algorithm
It's simple! See, e.g., Wikipedia. No improvement for decades

2021: Karlin, Klein, Gharan, (1.5 — £)-apx algorithm for some
e > 10736

L2 -Quantamacazine

Computer Scientists Break Traveling
Salesperson Record

) A . .] .y | f 1] r } ¥ 1AIY)) |
- After 44 vears, there’s finally a better way to find approximate solutions

Set Cover

Input: Pair (X, F), where X is a finite set and F C P(X) is
a family of subsets of X.

Set Cover

Input: Pair (X, F), where X is a finite set and F C P(X) is
a family of subsets of X.
Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.

Set Cover

Input: Pair (X, F), where X is a finite set and F C P(X) is
a family of subsets of X.
Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.

® ®
Ry

IC
o oo
R

Set Cover

Input: Pair (X, F), where X is a finite set and F C P(X) is
a family of subsets of X.
Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.
Exercise: Show that vertex I °
cover is a special case. o (® °
-
| @ ® Ry .J
o |
he 2

Set Cover

Input: Pair (X, F), where X is a finite set and F C P(X) is
a family of subsets of X.
Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.

. ® o ®
Exercise: Show that vertex n
cover is a special case. o (® °

—{1 8} [E_/ ® & O)
Fo (ML {L2L 230 0 .

{3,5,6},{4,5°8}, {6 8} (7)))) U
he_2 G 9

1 4

as o g—ef ey

Set Cover
Input: Pair (X, F), where X is a finite set and F C P(X) is

a family of subsets of X.

Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.

Exercise: Show that vertex
cover is a special case.

X :=1{1,2,...,8}
Fo={{1}{1,2},{2,3,4},

{3,5,6},{4,5,8},{6,8},{7}}

he 2 G 3 d

1 4

Qe e 3 of

g

Jr ~
o oo
(0 Rd.) °

X =k
F:={EW)|veV}
Ew)={weF|ueV}

G ol 15 e e

Greedy Algorithm

GREEDY-SET-COVER(X, F) /ﬁé&

1 =0
while X\S<i_|_1 + @)WZ},&%M
=1+ 1

Pick .S; EFWIth@’S \@

Return C := {51, ..

Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 := 0
while X \ S<@'_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.

5
%8R

A A R MR

1—1
Here, S<z’ = U Sj.
1=1

Xal X .
AJﬁf o
CaRgCanRY
CARIIRS

Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 :=0
while X \ S<@‘_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on

this instance.
Sl = Rl

1—1
Here, S<z’ = U Sj.
1=1

o« e
o oo
(03”0) PS

Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 :=0
while X \ S<z‘_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.

Sl = Rl

SQ = R4

1—1
Here, S<z’ = U Sj.
1=1

o« e
o lene
(03”0) PS

Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 :=0
while X \ S<z‘_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.

Sl = Rl
SQ = R4
Sg — R5

1—1
Here, S<z’ = U Sj.
1=1

o« e
o lene
(03”0) PS

Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 :=0
while X \ S<z‘_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.

Sl = Rl
SQ = R4
Sg — R5

54 = Rg or S4 = R6

1—1
Here, S<z’ = U Sj.
1=1

o« e
o lene
(03”0) PS

heorem

Thm.: For opt. sol. C*, we [GREEDY-SET-COVER(X, F)
have 1:=0
while X \ S<jq1 % 0
’C‘§H|X|‘C*‘7 1 =1+ 1
Pick S; € F with max |S; \ S<;]
where Return C := {51,...,5;}

H, = Zl/z <Inn-+1.
i=1

M

Hence, GREEDY-SET-COVER is a O(logn)-approx. alg.
— —~

Thm.: ‘C| < H|X| . ’C*‘

heorem

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 7& 0
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51,...,S;}

Thm.: ‘C| < H|X| . ’C*‘

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 7& @
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51, ..., Si }

1S\ S<i

elements.

heorem

Thm.: ‘C‘ < H|X| . ’C*‘

For z € S; \ S.;, define ¢, :

1

— TS\S<i|”

For Y C X, define ¢(Y') :== >, .y Cs.

Observation:

C|

c(X):Z Z cx221:\C\.

C|

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 75 @
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51, ..., Si }

1S\ S<i

elements.

Thm.: |C| < H|x, - |C*].

For x € §; \ S<;, define ¢, :=
For Y C X, define ¢(Y) := >

heorem

1
|1Si\S<il|"

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 7& @
1:=1+1
Pick S; € F with max |S; \ S|
Return C := {5}, ..., Si}

Observation:

e algoritim SOp:

ol Wt | /
(X) =) 1 =1cl.
total 03) =1 zé =1 O
Lemma: For all S €]\/
S| 1
c(S) =) - =Hys
i=1

1Si \ S<i

elements.

Thm.: ‘C| < H|X| . ’C*‘
1

For x € S; \ S<;, define ¢, := EACEAE
For Y C X, define ¢(Y) :=)y Ca.

heorem

Observation:

C| C|

c(X):Z Z ca;:Zl:\C\.

Lemma: Fora%IL@JE F:
o 5

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 75 @
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51, ..., Si }

elements.

ScCx* QgC*

Cl=clX)< Y e$)< Y His < Y Hix = [C°]- Hixo).

SeC*

Lemma: Idea and Example

Lemma: For all S € F: GREEDY-SET-COVER(X, F)
1:=0
hile X \ Sj1 # 0
S| i
R Pick S; € F with max |S; \ S
c(S5) < Z i His|. Return C := {5y, ..., 5.}
1=1 For x € S; \ S-;, define ¢, := Wl&l
For Y C X, define c(Y) := > .y Cu.
Idea: 1st element in S to be covered has ¢, < TS 2nd has ¢, < |S|1_1,
Example:
c(S) = §+1§+1§+1§+§+%+%
< 1+§+§+Z+5+5+7

Proof of Lemma

Lemma: For all S € F: OREEDSET-COVERKE.7)
1 .=
while X \ S_ipq # 0
|S| 1 i=1i4+1
< Z 1 . Pick S; € F with max |S; \ S|
C(S) ~ ; H‘S| Return C :={S},. .., Si}
1=1 For z € S;\ S<;, define ¢, := Wlsd

For Y C X, define c(Y) := > .y Cu.

Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).

Proof of Lemma

Lemma: For all § € F: GREEDOY-SET-COVER(Xa F)
i=
while X \ S<Z‘+1 7& @
|S| 1 1:=1+1
< R . Pick S; € F with max |S; \ S
c(S) < Z ; Hig) Return C == {Sy,..., S;}
1=1 For z € S; \ S.;, define ¢, := —\Si\15<i|'

For Y C X, define c(Y) := > .y Cu.

Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).

z; covered first by S; = |S\ S<;i| > J

(since S'\ S<; contains z;,z;_1,...,%1)

Proof of Lemma

Lemma: For all S € F: OREEDSET-COVERKE.7)
1 .=
while X \ S_ipq # 0
|S| 1 i=1i4+1
< Z 1 . Pick S; € F with max |S; \ S|
C(S) ~ ; H‘S| Return C :={S},. .., Si}
1=1 For z € S;\ S<;, define ¢, := Wlsd

For Y C X, define c(Y) := > .y Cu.
Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).

z; covered first by S; = |S\ S<;i| > J
(since S'\ S<; contains z;,z;_1,...,%1)

‘Si\S<7;‘ > ’S\S<i‘ >) = Cp, = IS¢\15<7;| < L

J
k» by greedy choice of 5;

Proof of Lemma

Lemma: For all S € F: OREEDSET-COVERKE.7)
1 .=
while X \ S_ipq # 0
|S| 1 i=1i4+1
< Z 1 . Pick S; € F with max |S; \ S|
C(S) ~ ; H‘S| Return C :={S},. .., Si}
1=1 For z € S;\ S<;, define ¢, := Wlsd

For Y C X, define c(Y) := > .y Cu.
Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).

z; covered first by S; = |S\ S<;i| > J
(since S'\ S<; contains z;,z;_1,...,%1)

. 1 1

‘Sz\S<Z‘ > ’S\S<Z‘ Z.] — Cp, = S \S<i] < 5
L>by greedy choice of 5;

c(S)=cCy +Copt...tey <1+2+...4++=Hg

Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C:=1
while E # ()
Choose v € V' of maximum degree
C:=CU{u}
Remove edges incident to u from E
return C

Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C:=1
while E # ()
Choose v € V' of maximum degree
C:=CU{u}
Remove edges incident to u from E
return C

Exercise: Find graph G where GREEDY-VERTEX-COVER
does not produce optimal solution.

Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C:=1
while E # ()
Choose v € V of W,
C:=CU{u}
Remove edges incident to u from E
return C

Exercise: Find graph G where GREEDY-VERTEX-COVER
does not produce optimal solution.

The algorithm only gives a ©(log | E'|)-approximation.

