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APPROX-VERTEX-COVER(G)
C:=0
while E(G) # 0
choose uv € E(G)
C:=CU{u,v}
remove all edges incident on u or v from E(G)
return C
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he big picture

Last time: Fast exponential algorithms (good for small
instances) and parameterized algorithms (good for special

cases).

Today: Approximation algorithms (good when suboptimal
solutions are acceptable).
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Vertex Cover

Def.: Let G = (V, E) be a graph. A set V' C V of vertices is
a vertex cover if for all uv € E, we have u € V' orv € V',

NP-hard!
APPROX-VERTEX-COVER(G)
C:=10
while E(G) # 0
choose uv € E(G)
C:=CUA{u,v}
remove all edges incident on u or v from E(G)

return C
Exercise: 7
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Implementation

Adjacency lists:

o] = (b}
L|b] = {a,c}

Lic] = {b,d, e}
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Implementation

3 d Adjacency lists:
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Implementation

Adjacency lists:

be— S 34 _ |
Llal ={b}  Ela] =[1]
1I X XX\ Lb| ={a,c} E[b] = (1,2
a . f p Lic] = {b,d,e} FElc| = [2,3,4]
Array of edge/y

(a,b,1), (b,c,1), (c,d, 1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (c,d, 1), (c,e, 1), (d,e, 1), ...]
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Implementation

bl X c 3 d Adjacency lists:

Lia] = {b} Fla] =
X x 1/ Lb] = {a,c} Eb]=11,2]

: f
Array of edge/

(a,b,1), (b,c,1), (c,d, 1), (c,e,1),(d,e, 1), ...]
(a,b,0), (b,c,0), (c,d, 1), (c,e, 1), (d,e, 1), ...]
(a,b,0), (b,¢c,0), (c,d,0), (c,e,0), (d,e,0), ...]

Running time: O(|V| + |E])
N e sine 4+ 7”‘1””
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heorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C* be an optimal cover.
Let@c E be the edges chosen by the algorithm.

Sinee i s a0V,

An endpoint of each
uv € A must be in C*.

Hence,
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Reflection and methodology

How can we prove C'/C* < 2 when we don't know C*?

Answer: By proving C' < 2|A| and |A| < C*.

General technique: Find a parameter [ such that C' < p-
and L < C*.

For vertex cover: [1= |A| and p = 2.




Question

Try to guess: |Is there an approximation algorithm with a
better approximation ratio?




History

1972: Karp's 21 NP-complete problems
(including vertex cover, set cover, Hamiltonian cycle and
subset sum)

Turing Award

ACM
A M. TURING AWARD

Karp



History

19xx: Many < 2 —o(1).

Gavril Yannakakis



History

Assuming P#£NP:

1999: Hastad, > 7/6

2005: Dinur & Safra, > 1.38
2018: Khot, Minzer, Safra, > 1.41

Hastad Dinur



History

2008: Khot & Regev, > 2 — ¢ assuming the

Unique Game Conjecture

V\Some, but not all people believe it.
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raveling Salesperson
Given a complete undirected graph G = (V, E).
For all u,v € V, we are given c(uv) € {0,1,...}.
Goal: Find minimum weight cycle through all vertices.

Assume: Triangle inequality: c(uw) < c(uv) + c(vw).

Still NP-hard!
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APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

T Exercise: Run the algorithm
on this instance.
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poly-time 2-approx. alg.
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APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* be an opt. sol.
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APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* befn opt. sol.
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heorem

APPROX-TSP(G, ¢)
Find MST T
Make Euler tour W using each edge of T" twice

Shortcut W to H by skipping duplicates
Return H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?

Let H* be an opt. sol.

) =2¢(T)|[=— c¢(H) < 2¢(H*)
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Reflection and methodology
How can we prove ¢(H)/c(H*) < 2 when we don't know H*?

Answer: By proving ¢(H) < 2¢(T') and ¢(T) < c(H™).

General technique: Find a parameter [ such that C' < p-
and L < C*.

For TSP: = ¢(T') and p = 2.



Question

Try to guess: |Is there an approximation algorithm with a
better approximation ratio?




History

1976: Christofides, Serdyukov, 1.5-apx algorithm
It's simple! See, e.g., Wikipedia. No improvement for decades

2021: Karlin, Klein, Gharan, (1.5 — £)-apx algorithm for some
e > 10736

L2 -Quantamacazine

Computer Scientists Break Traveling
Salesperson Record

) A . . ] .y | f 1] r } ¥ 1AIY) ) |
- After 44 vears, there’s finally a better way to find approximate solutions
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Set Cover

Input: Pair (X, F), where X is a finite set and F C P(X) is
a family of subsets of X.
Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.
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Set Cover
Input: Pair (X, F), where X is a finite set and F C P(X) is

a family of subsets of X.

Goal: Find C C F covering X, i.e., Jgee S = X, with |C

minimum.

Exercise: Show that vertex
cover is a special case.

X :=1{1,2,...,8}
Fo={{1}{1,2},{2,3,4},

{3,5,6},{4,5,8},{6,8},{7}}
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X =k
F:={EW)|veV}
Ew)={weF|ueV}
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Greedy Algorithm

GREEDY-SET-COVER(X, F) /ﬁé&

1 =0
while X\S<i_|_1 + @)WZ},&%M
=1+ 1

Pick .S; EFWIth@’S \@

Return C := {51, ..




Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 := 0
while X \ S<@'_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.
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this instance.

Sl = Rl

SQ = R4

1—1
Here, S<z’ = U Sj.
1=1

o« e
o lene
(03”0) PS



Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 :=0
while X \ S<z‘_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.

Sl = Rl
SQ = R4
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Greedy Algorithm

GREEDY-SET-COVER(X, F)
1 :=0
while X \ S<z‘_|_1 7& @
1 =1+ 1
Pick S; € F with max |.S; \ S<;]
Return C :={51,...,5;}

Exercise: Run the algorithm on
this instance.

Sl = Rl
SQ = R4
Sg — R5

54 = Rg or S4 = R6

1—1
Here, S<z’ = U Sj.
1=1

o« e
o lene
(03”0) PS



heorem

Thm.: For opt. sol. C*, we [GREEDY-SET-COVER(X, F)
have 1:=0
while X \ S<jq1 % 0
’C‘§H|X|‘C*‘7 1 =1+ 1
Pick S; € F with max |S; \ S<;]
where Return C := {51,...,5;}

H, = Zl/z <Inn-+1.
i=1

M

Hence, GREEDY-SET-COVER is a O(logn)-approx. alg.
— —~




Thm.: ‘C| < H|X| . ’C*‘

heorem

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 7& 0
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51,...,S;}




Thm.: ‘C| < H|X| . ’C*‘

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 7& @
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51, ..., Si }

1S\ S<i

elements.
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Thm.: ‘C‘ < H|X| . ’C*‘

For z € S; \ S.;, define ¢, :

1

— TS\S<i|”

For Y C X, define ¢(Y') :== >, .y Cs.

Observation:

C|

c(X):Z Z cx221:\C\.

C|

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 75 @
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51, ..., Si }

1S\ S<i

elements.



Thm.: |C| < H|x, - |C*].

For x € §; \ S<;, define ¢, :=
For Y C X, define ¢(Y) := >

heorem

1
|1Si\S<il|"

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 7& @
1:=1+1
Pick S; € F with max |S; \ S|
Return C := {5}, ..., Si}

Observation:

e algoritim SOp:

ol Wt | /
(X) =) 1 =1cl.
total 03) =1 zé =1 O
Lemma: For all S € ]\/
S| 1
c(S) =) - =Hys
i=1

1Si \ S<i

elements.



Thm.: ‘C| < H|X| . ’C*‘
1

For x € S; \ S<;, define ¢, := EACEAE
For Y C X, define ¢(Y) := )y Ca.

heorem

Observation:

C| C|

c(X):Z Z ca;:Zl:\C\.

Lemma: Fora%IL@JE F:
o 5

GREEDY-SET-COVER(X, F)
1:=0
while X \ S<Z‘+1 75 @
1:=1+1
Pick S; € F with max |S; \ S
Return C := {51, ..., Si }

elements.

ScCx* QgC*

Cl=clX)< Y e$)< Y His < Y Hix = [C°]- Hixo).

SeC*




Lemma: Idea and Example

Lemma: For all S € F: GREEDY-SET-COVER(X, F)
1:=0
hile X \ Sj1 # 0
S| i
R Pick S; € F with max |S; \ S
c(S5) < Z i His|. Return C := {5y, ..., 5.}
1=1 For x € S; \ S-;, define ¢, := Wl&l
For Y C X, define c(Y) := > .y Cu.
Idea: 1st element in S to be covered has ¢, < TS 2nd has ¢, < |S|1_1,
Example:
c(S) = §+1§+1§+1§+§+%+%
< 1+§+§+Z+5+5+7




Proof of Lemma

Lemma: For all S € F: OREEDSET-COVERKE.7)
1 .=
while X \ S_ipq # 0
|S| 1 i=1i4+1
< Z 1 . Pick S; € F with max |S; \ S|
C(S) ~ ; H‘S| Return C :={S},. .., Si}
1=1 For z € S;\ S<;, define ¢, := Wlsd

For Y C X, define c(Y) := > .y Cu.

Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).
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Lemma: For all § € F: GREEDOY-SET-COVER(Xa F)
i=
while X \ S<Z‘+1 7& @
|S| 1 1:=1+1
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(since S'\ S<; contains z;,z;_1,...,%1)



Proof of Lemma

Lemma: For all S € F: OREEDSET-COVERKE.7)
1 .=
while X \ S_ipq # 0
|S| 1 i=1i4+1
< Z 1 . Pick S; € F with max |S; \ S|
C(S) ~ ; H‘S| Return C :={S},. .., Si}
1=1 For z € S;\ S<;, define ¢, := Wlsd

For Y C X, define c(Y) := > .y Cu.
Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).
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J
k» by greedy choice of 5;



Proof of Lemma

Lemma: For all S € F: OREEDSET-COVERKE.7)
1 .=
while X \ S_ipq # 0
|S| 1 i=1i4+1
< Z 1 . Pick S; € F with max |S; \ S|
C(S) ~ ; H‘S| Return C :={S},. .., Si}
1=1 For z € S;\ S<;, define ¢, := Wlsd

For Y C X, define c(Y) := > .y Cu.
Proof: Let S = {xk,xx_1,...,21}, where xj, covered first, then xj_1,
etc. (break ties arbitrarily).

z; covered first by S; = |S\ S<;i| > J
(since S'\ S<; contains z;,z;_1,...,%1)

. 1 1

‘Sz\S<Z‘ > ’S\S<Z‘ Z.] — Cp, = S \S<i] < 5
L>by greedy choice of 5;

c(S)=cCy +Copt...tey <1+2+...4++=Hg




Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C:=1
while E # ()
Choose v € V' of maximum degree
C:=CU{u}
Remove edges incident to u from E
return C
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C:=1
while E # ()
Choose v € V' of maximum degree
C:=CU{u}
Remove edges incident to u from E
return C

Exercise: Find graph G where GREEDY-VERTEX-COVER
does not produce optimal solution.



Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C:=1
while E # ()
Choose v € V of W,
C:=CU{u}
Remove edges incident to u from E
return C

Exercise: Find graph G where GREEDY-VERTEX-COVER
does not produce optimal solution.

The algorithm only gives a ©(log | E'|)-approximation.



