
Introduction to Approximation Algorithms, part I

20-12 2022, Mikkel Abrahamsen,
Department of Computer Science

APPROX-VERTEX-COVER(G)
C := ;
while E(G) 6= ;
choose uv 2 E(G)
C := C [{u, v}
remove all edges incident on u or v from E(G)

return C

The big picture

Last time: Fast exponential algorithms (good for small
instances) and parameterized algorithms (good for special
cases).

The big picture

Last time: Fast exponential algorithms (good for small
instances) and parameterized algorithms (good for special
cases).

Today: Approximation algorithms (good when suboptimal
solutions are acceptable).

Definition

Def.: An algorithm for an optimization problem has
approximation ratio ⇢(n) if for every input of size n,

max

⇢
C

C⇤ ,
C⇤

C

�
 ⇢(n).

Definition

Def.: An algorithm for an optimization problem has
approximation ratio ⇢(n) if for every input of size n,

max

⇢
C

C⇤ ,
C⇤

C

�
 ⇢(n).

C⇤ :=cost(opt. sol.) C :=cost(produced sol.)

Definition

Def.: An algorithm for an optimization problem has
approximation ratio ⇢(n) if for every input of size n,

max

⇢
C

C⇤ ,
C⇤

C

�
 ⇢(n).

C⇤ :=cost(opt. sol.) C :=cost(produced sol.)

minimization problem maximization problem

Vertex Cover

Def.: Let G = (V,E) be a graph. A set V 0 ✓ V of vertices is
a vertex cover if for all uv 2 E, we have u 2 V 0 or v 2 V 0.

Vertex Cover

Def.: Let G = (V,E) be a graph. A set V 0 ✓ V of vertices is
a vertex cover if for all uv 2 E, we have u 2 V 0 or v 2 V 0.
NP-hard!

Vertex Cover

Def.: Let G = (V,E) be a graph. A set V 0 ✓ V of vertices is
a vertex cover if for all uv 2 E, we have u 2 V 0 or v 2 V 0.
NP-hard!

APPROX-VERTEX-COVER(G)
C := ;
while E(G) 6= ;
choose uv 2 E(G)
C := C [{u, v}
remove all edges incident on u or v from E(G)

return C

Vertex Cover

Def.: Let G = (V,E) be a graph. A set V 0 ✓ V of vertices is
a vertex cover if for all uv 2 E, we have u 2 V 0 or v 2 V 0.
NP-hard!

APPROX-VERTEX-COVER(G)
C := ;
while E(G) 6= ;
choose uv 2 E(G)
C := C [{u, v}
remove all edges incident on u or v from E(G)

return C
Exercise:

a

b c d

e f g

1

2 3

4 5 6 7

8

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:2

4 5 6 7

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 0), (c, e, 0), (d, e, 0), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 0), (c, e, 0), (d, e, 0), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Implementation

a

b c d

e f g

1

3

8

L[a] = {b}
L[b] = {a, c}
L[c] = {b, d, e}
...

Adjacency lists:

[(a, b, 1), (b, c, 1), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 1), (c, e, 1), (d, e, 1), . . .]

[(a, b, 0), (b, c, 0), (c, d, 0), (c, e, 0), (d, e, 0), . . .]

2

4 5 6 7
E[a] = [1]
E[b] = [1, 2]
E[c] = [2, 3, 4]
...

Array of edges

Running time: O(|V |+ |E|)

Theorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Theorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C⇤ be an optimal cover.
Let A ⇢ E be the edges chosen by the algorithm.

Theorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C⇤ be an optimal cover.
Let A ⇢ E be the edges chosen by the algorithm.

An endpoint of each
uv 2 A must be in C⇤.

Theorem

Thm.: APPROX-VERTEX-COVER is a 2-approximation
algorithm.

Proof: Let C⇤ be an optimal cover.
Let A ⇢ E be the edges chosen by the algorithm.

An endpoint of each
uv 2 A must be in C⇤.

Hence,

|C⇤| � |A| = |C|/2 =) |C|
|C⇤| 2.

Reflection and methodology

How can we prove C/C⇤ 2 when we don’t know C⇤?

Answer: By proving C 2|A| and |A| C⇤.

Reflection and methodology

How can we prove C/C⇤ 2 when we don’t know C⇤?

Answer: By proving C 2|A| and |A| C⇤.

General technique: Find a parameter ⇤ such that C ⇢ ·⇤
and ⇤ C⇤.

For vertex cover: ⇤ = |A| and ⇢ = 2.

Question

Try to guess: Is there an approximation algorithm with a
better approximation ratio?

History

Turing Award

Karp

1972: Karp’s 21 NP-complete problems
(including vertex cover, set cover, Hamiltonian cycle and
subset sum)

History

19xx: Many 2� o(1).

. . .

Gavril Yannakakis

History

Assuming P 6=NP:
1999: Håstad, � 7/6
2005: Dinur & Safra, � 1.38
2018: Khot, Minzer, Safra, � 1.41

Håstad Dinur Safra Khot Minzer

History

2008: Khot & Regev, � 2� " assuming the
Unique Game Conjecture.

Khot RegevNevanlinna prize 2016

Some, but not all people believe it.

Traveling Salesperson

Given a complete undirected graph G = (V,E).

For all u, v 2 V , we are given c(uv) 2 {0, 1, . . .}.
Goal: Find minimum weight cycle through all vertices.

Traveling Salesperson

Given a complete undirected graph G = (V,E).

For all u, v 2 V , we are given c(uv) 2 {0, 1, . . .}.
Goal: Find minimum weight cycle through all vertices.

Assume: Triangle inequality: c(uw) c(uv) + c(vw).

u

v

w

Traveling Salesperson

Given a complete undirected graph G = (V,E).

For all u, v 2 V , we are given c(uv) 2 {0, 1, . . .}.
Goal: Find minimum weight cycle through all vertices.

Assume: Triangle inequality: c(uw) c(uv) + c(vw).

Still NP-hard!

u

v

w

Algorithm

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

Algorithm

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

Algorithm

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T

Algorithm

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

Algorithm

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Algorithm

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Exercise: Run the algorithm
on this instance.

a b

c

d

Theorem

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.

Theorem

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?
Let H⇤ be an opt. sol.

Theorem

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?
Let H⇤ be an opt. sol.

c(T) c(H⇤)

Theorem

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?
Let H⇤ be an opt. sol.

c(T) c(H⇤)

c(W) = 2c(T)

Theorem

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?
Let H⇤ be an opt. sol.

c(T) c(H⇤)

c(W) = 2c(T)

c(H) c(W)

Theorem

APPROX-TSP(G, c)
Find MST T
Make Euler tour W using each edge of T twice
Shortcut W to H by skipping duplicates
Return H

T
W

H

Thm.: APPROX-TSP is a
poly-time 2-approx. alg.
Proof: Poly-time?
Let H⇤ be an opt. sol.

c(T) c(H⇤)

c(W) = 2c(T)

c(H) c(W)

=) c(H) 2c(H⇤)

Reflection and methodology

How can we prove c(H)/c(H⇤) 2 when we don’t know H⇤?

Answer: By proving c(H) 2c(T) and c(T) c(H⇤).

Reflection and methodology

How can we prove c(H)/c(H⇤) 2 when we don’t know H⇤?

Answer: By proving c(H) 2c(T) and c(T) c(H⇤).

General technique: Find a parameter ⇤ such that C ⇢ ·⇤
and ⇤ C⇤.

For TSP: ⇤ = c(T) and ⇢ = 2.

Question

Try to guess: Is there an approximation algorithm with a
better approximation ratio?

T
W

H

History

1976: Christofides, Serdyukov, 1.5-apx algorithm
It’s simple! See, e.g., Wikipedia. No improvement for decades

2021: Karlin, Klein, Gharan, (1.5� ")-apx algorithm for some
" > 10�36

Set Cover

Input: Pair (X,F), where X is a finite set and F ✓ P(X) is
a family of subsets of X.

Set Cover

Input: Pair (X,F), where X is a finite set and F ✓ P(X) is
a family of subsets of X.
Goal: Find C ✓ F covering X, i.e.,

S
S2C S = X, with |C|

minimum.

Set Cover

Input: Pair (X,F), where X is a finite set and F ✓ P(X) is
a family of subsets of X.
Goal: Find C ✓ F covering X, i.e.,

S
S2C S = X, with |C|

minimum.

R1

R2

R3 R4 R5

R6

Set Cover

Input: Pair (X,F), where X is a finite set and F ✓ P(X) is
a family of subsets of X.
Goal: Find C ✓ F covering X, i.e.,

S
S2C S = X, with |C|

minimum.

Exercise: Show that vertex
cover is a special case.

a

b c d

e f g

1

2 3

4 5 6 7

8

R1

R2

R3 R4 R5

R6

Set Cover

Input: Pair (X,F), where X is a finite set and F ✓ P(X) is
a family of subsets of X.
Goal: Find C ✓ F covering X, i.e.,

S
S2C S = X, with |C|

minimum.

Exercise: Show that vertex
cover is a special case.

a

b c d

e f g

1

2 3

4 5 6 7

8

X := {1, 2, . . . , 8}
F := {{1}, {1, 2}, {2, 3, 4},
{3, 5, 6}, {4, 5, 8}, {6, 8}, {7}}

R1

R2

R3 R4 R5

R6

Set Cover

Input: Pair (X,F), where X is a finite set and F ✓ P(X) is
a family of subsets of X.
Goal: Find C ✓ F covering X, i.e.,

S
S2C S = X, with |C|

minimum.

Exercise: Show that vertex
cover is a special case.

a

b c d

e f g

1

2 3

4 5 6 7

8

X := {1, 2, . . . , 8}
F := {{1}, {1, 2}, {2, 3, 4},
{3, 5, 6}, {4, 5, 8}, {6, 8}, {7}}

R1

R2

R3 R4 R5

R6

X := E
F := {E(v) | v 2 V }
E(v) := {uv 2 E | u 2 V }

Greedy Algorithm

Here, S<i :=
i�1[

j=1

Sj .

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \S<i|

Return C := {S1, . . . , Si}

Greedy Algorithm

Here, S<i :=
i�1[

j=1

Sj .

Exercise: Run the algorithm on
this instance.

R1

R2

R3 R4 R5

R6

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \S<i|

Return C := {S1, . . . , Si}

Greedy Algorithm

Here, S<i :=
i�1[

j=1

Sj .

Exercise: Run the algorithm on
this instance.

R1

R2

R3 R4 R5

R6

S1 := R1

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \S<i|

Return C := {S1, . . . , Si}

Greedy Algorithm

Here, S<i :=
i�1[

j=1

Sj .

Exercise: Run the algorithm on
this instance.

R1

R2

R3 R4 R5

R6

S1 := R1

S2 := R4

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \S<i|

Return C := {S1, . . . , Si}

Greedy Algorithm

Here, S<i :=
i�1[

j=1

Sj .

Exercise: Run the algorithm on
this instance.

R1

R2

R3 R4 R5

R6

S1 := R1

S2 := R4

S3 := R5

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \S<i|

Return C := {S1, . . . , Si}

Greedy Algorithm

Here, S<i :=
i�1[

j=1

Sj .

Exercise: Run the algorithm on
this instance.

R1

R2

R3 R4 R5

R6

S1 := R1

S2 := R4

S3 := R5

S4 := R3 or S4 := R6

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \S<i|

Return C := {S1, . . . , Si}

Theorem

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Thm.: For opt. sol. C⇤, we
have

|C| H|X| · |C⇤|,

where

Hn :=
nX

i=1

1/i lnn+ 1.

Hence, GREEDY-SET-COVER is a O(log n)-approx. alg.

Theorem

Thm.: |C| H|X| · |C⇤|. GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Theorem

Thm.: |C| H|X| · |C⇤|.
For x 2 Si \ S<i, define cx := 1

|Si\S<i| .

For Y ⇢ X, define c(Y) :=
P

x2Y cx.

S1
S2

Si�1

Si |Si \ S<i|
elements.

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Theorem

Thm.: |C| H|X| · |C⇤|.
For x 2 Si \ S<i, define cx := 1

|Si\S<i| .

For Y ⇢ X, define c(Y) :=
P

x2Y cx.

S1
S2

Si�1

Si |Si \ S<i|
elements.

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Observation:

c(X) =

|C|X

i=1

X

x2Si\S<i

cx =

|C|X

i=1

1 = |C|.

Theorem

Thm.: |C| H|X| · |C⇤|.
For x 2 Si \ S<i, define cx := 1

|Si\S<i| .

For Y ⇢ X, define c(Y) :=
P

x2Y cx.

S1
S2

Si�1

Si |Si \ S<i|
elements.

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

Observation:

c(X) =

|C|X

i=1

X

x2Si\S<i

cx =

|C|X

i=1

1 = |C|.

Theorem

Thm.: |C| H|X| · |C⇤|.
For x 2 Si \ S<i, define cx := 1

|Si\S<i| .

For Y ⇢ X, define c(Y) :=
P

x2Y cx.

S1
S2

Si�1

Si |Si \ S<i|
elements.Proof of Thm.:

|C| = c(X)
X

S2C⇤

c(S)
X

S2C⇤

H|S|
X

S2C⇤

H|X| = |C⇤| ·H|X|.

GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

Observation:

c(X) =

|C|X

i=1

X

x2Si\S<i

cx =

|C|X

i=1

1 = |C|.

Lemma: Idea and Example
GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Idea: 1st element in S to be covered has cx 1
|S| , 2nd has cx 1

|S|�1 ,
. . .

1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
4

1
4

1
4

1
4

1
2

S

S1S2
S3

c(S) = 1
2+

1
4+

1
4+

1
8+

1
8+

1
8+

1
8

 1+ 1
2 +

1
3 +

1
4 +

1
5 +

1
6 +

1
7

= H|S|.

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

For x 2 Si \ S<i, define cx :=
1

|Si\S<i| .
For Y ⇢ X, define c(Y) :=

P
x2Y cx.

Example:

Proof of Lemma
GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Proof: Let S = {xk, xk�1, . . . , x1}, where xk covered first, then xk�1,
etc. (break ties arbitrarily).

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

For x 2 Si \ S<i, define cx :=
1

|Si\S<i| .
For Y ⇢ X, define c(Y) :=

P
x2Y cx.

Proof of Lemma
GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Proof: Let S = {xk, xk�1, . . . , x1}, where xk covered first, then xk�1,
etc. (break ties arbitrarily).

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

For x 2 Si \ S<i, define cx :=
1

|Si\S<i| .
For Y ⇢ X, define c(Y) :=

P
x2Y cx.

xj covered first by Si =) |S \ S<i| � j
(since S \ S<i contains xj , xj�1, . . . , x1)

Proof of Lemma
GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Proof: Let S = {xk, xk�1, . . . , x1}, where xk covered first, then xk�1,
etc. (break ties arbitrarily).

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

For x 2 Si \ S<i, define cx :=
1

|Si\S<i| .
For Y ⇢ X, define c(Y) :=

P
x2Y cx.

xj covered first by Si =) |S \ S<i| � j
(since S \ S<i contains xj , xj�1, . . . , x1)

|Si \ S<i| � |S \ S<i| � j =) cxj = 1
|Si\S<i|

1
j .

by greedy choice of Si

Proof of Lemma
GREEDY-SET-COVER(X,F)
i := 0
while X \ S<i+1 6= ;
i := i+ 1
Pick Si 2 F with max |Si \ S<i|

Return C := {S1, . . . , Si}

Proof: Let S = {xk, xk�1, . . . , x1}, where xk covered first, then xk�1,
etc. (break ties arbitrarily).

Lemma: For all S 2 F :

c(S)
|S|X

i=1

1

i
= H|S|.

For x 2 Si \ S<i, define cx :=
1

|Si\S<i| .
For Y ⇢ X, define c(Y) :=

P
x2Y cx.

xj covered first by Si =) |S \ S<i| � j
(since S \ S<i contains xj , xj�1, . . . , x1)

|Si \ S<i| � |S \ S<i| � j =) cxj = 1
|Si\S<i|

1
j .

by greedy choice of Si

c(S) = cx1 + cx2 + . . .+ cxk 1 + 1
2 + . . .+ 1

k = H|S|

Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C := ;
while E 6= ;
Choose v 2 V of maximum degree
C := C [{u}
Remove edges incident to u from E

return C

Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C := ;
while E 6= ;
Choose v 2 V of maximum degree
C := C [{u}
Remove edges incident to u from E

return C

Exercise: Find graph G where GREEDY-VERTEX-COVER
does not produce optimal solution.

Using greedy algorithm for vertex cover

GREEDY-VERTEX-COVER(G)
C := ;
while E 6= ;
Choose v 2 V of maximum degree
C := C [{u}
Remove edges incident to u from E

return C

Exercise: Find graph G where GREEDY-VERTEX-COVER
does not produce optimal solution.

The algorithm only gives a ⇥(log |E|)-approximation.

