Features

All learning notes are based on the course "Signal and Image Processing” taught by UCPH.
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Image feature detection

Why image features?

Marr's layers of abstraction for vision systems (1982)

Layers of Abstractions

Object recognition,
3D Model Scene understanding
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This is an old picture of how and we can do analysis of images, and it comes from an old book on
how to build vision systems. Even though the content of the model might be debatable, the core
idea is still very much useful for us.

So the concept is that, at the lowest level, any image that we have the broad pixels in the digital
image. But when we want to do any form of analysis or interpretation of what we see in the
image, we need to build up abstractions or based on these pixels.

Concretely, you can think of abstractions as being functions of the pixels, but we would like to
extract some information from the pixels, for instance saying that, if we look at this particular
scene, here we have a tree, we have a camera and a computer. The computer builds up some
abstraction. And at the lowest level, we have something that in image analysis and computer
vision. We call this, features. This could for instance be to identify like trunks, or the parts of an
object this could be by segementation. For instance, I could identify a tree by identify a tree trunk
and could identify the tree crown, leaves, and so on.



But as part of this, we might need to have even more fine detail descriptions of what we see here
in order to actually form up these parts.

Now, on top of this, we might start to do things like inferred depths that means what is the
distance from the camera to objects in the scene?

We can also say something about orientation of objects, what are potential occlusion boundaries
that is one object being in front of another object hiding the object behind?

Maybe the end goal is to form a 3D model of the scene. It could also be to say I am looking at a
tree.

So => This is sort of the pipeline in image analysis. There is something low level going on and
on top of that, we add more and more complex or more abstracts descriptions of what we see in
the scene until at the end, we have a understanding of what we see in the image.

Today, we will look at features and what this means.
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Image derivatives revisited

Recall: Differentiation filters amplifies noise
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Image derivatives with Gaussian filters

Use a Gaussian filter G, to smooth prior to computing image derivatives
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Note that due to the commutative property of derivatives and convolution: (# G435 4)
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In the context of image processing and computer vision, the scale-space of derivatives refers to a
sequence of smoothed and differentiated images obtained by convolving an input image with
Gaussian filters of varying scales (represented by the parameter o).

L(x,y; o) represents the output of applying the Gaussian filter with standard deviation o to the
input image I at location (x,y). This operation smooths the input image to different degrees
depending on the scale o, effectively removing high-frequency details and noise.

L,(z,y; o) represents the derivative of the smoothed image with respect to the x-axis, obtained
by convolving the smoothed image with the derivative of the Gaussian filter with respect to x,
denoted as 6Go/dx. Similarly, L, (z, y; o) represents the derivative of the smoothed image with
respect to the y-axis, obtained by convolving the smoothed image with the derivative of the
Gaussian filter with respect to y, denoted as 0Gao/0y.

So, L,(z,y;0) = I x 0Go(x,y)/Ox represents the convolution of the input image with the
derivative of the Gaussian filter with respect to x, which results in a smoothed and differentiated
image with respect to the x-axis.

c=1,2,4,8,16
How to compute Gaussian derivatives in practice

In Python, we can use scipy.ndimage.gaussian_filter

Computing the x-derivative at scale given by sigma:



sigma = 1.0

derivative ordre = (0, 1) # Row-col format

Lx = gaussian_filter(I, sigma, order=derivative_order)
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Are derivatives useful?

Derivatives permit the calculation of many invariants which are functions that are invariant
with respect to certain transformations of the image domain.

Invariants can be used to define image features.

Intensity edges, ridges, corners are all examples of image features.
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Intenstiy edges

Then, let's start by looking at a concrete type of image features. Namely, the intensity edges.

Edge detection

Useful for segmentation and object boundaries

An intensity edge is defined by locations in the image of abrupt changes in intensities.



So for instance, if we look at this image, there are several places where the intensities go from
darker to brighter.

For instance, we have this person's shirt here, we can sort of easily see that something going on
and actually here even though we can see it as a white shirt, it looks a bit dark here and then,

you have sort of brighter pixels out in the asphalt. => 2 EX N E BT, FAIELEDX N AH)
w12, BARERAAR, [HEME EMPEMHEL, MEmEETE K.

So if we take a cut through what a part of the image, so let me just pick out a line here. Cut the
pixels out and visualize these.

1D edge profile from (470,770) to (520, 770)
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Here, we can see in the background, there's some asphalt here appears slightly brighter and that
is seen as high intensity values in the image.

Similarly, on this person’s arm here, we have sort of darker pixels, that means we have lower
intensity values.



So, we can sort of seen that through this cut here, we have something that looks a bit like abrupt
chnages in the intensity level. Just moving along the line from inside the arm out ot asphalt.

So, from the right part and all the way into the asphalt (left part).

This is basically what we call an intensity edge and of course if we consider something like this
person'’s arm, we could probably find like several locations here where we have an abrupt change
probably like a complete curve of pixels here with this but looks something similar to this.

This is an example of an intensity edge.

Algorithm

And we can make algorithms to detect this, but let's start with a simplified case here.
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In blue, I have an idealized edge, idealized intensity. So again, you can think of this as being cut
out of some image with taking out a line of pixels and look at the values there.

I also plot the first order derivative that is reddish curve, and the second order derivate which is
the yellow curve. And the third order derivative which is purple curve.



Now, where if I have this blue change intensity, where would I like the edge to be? Does it start
down here or does it start up here. Or do we want to have the point that sort of at the location
where the edge is changing the most? So that's a choice we have to make.

But a common decision for this is to say. Let me go for the location of most change. So, if we look
at this curve, it's changes fast here. So, having the steepest descend or ascend depending on
whether you go up or down. This can easily define by looking at the derivative.

So, this location here with the most change that's basically given by finding a a local maximum
of the first order derivative to do that. You can just remember basic function analysis that then
we probably just need to find locations where the second deriavtive is equal to zero. And we also
need to check that the third derivative is negative at this location.

TR, T 7 — SRR D S B AR L ) s B AR (bl 2. BRI, AT LUK A R
MIFEAEE PO —ATRF, HERRRBERE.

el v S8 (@ihz) - S GRalK) =S8 CREfhZL) o R
FA KPR AR, AT RN D ZAER e B X BRI X B IR
B A 1 BN G A T R B X TR T B A PR

(BB AR B o LEFRIEFAR MR RO E . B, WEREATREX Sl 2, BEX R
AR Hitt, ERARKRZMRAE, FATa] DLsd & — B S8 R R ER R 2]
BEWALE . AT WENRX— 5, BHAGEICAREARE T, RETRA T 68 T2
FREETENAE I HRNE T EREXA MU ER =P SECR A8 .

This would be a way to define an edge.

I define this in 1D, so we need to extend this to 2D.

Edge detection by local maxima of gradient magnitude

In order to do this, we use the tools from that I presented in the scale space videos that we can
compute this gradient magnitude which is that we take for the two first order derivative so that
first order derivative along the x-axis and the first order derivative along the y-axis.

We think of that as forming a vector namely the gradient vector and then we compute the length
of this vector.

IVL||(2,550) = 1/ (La)? + (Ly)?



Or equivalently, we could also compute the gradient magnitude squared. That the only difference

areas whether or not I take the square root.

IVLI*(2,5;0) = (Ls)* + (Ly)*
It does not matter whether I take the square or not, it does not change location.
So, how can I use this?

What we just saw here in before in 1D, what would be to look for location where the expression

has local maxima.
So this is maxima both across  and y in space.

For the fun of it, I've computed is gradient magnitude squared the result of that of applying it to

the image.

So we have bright values large values at something that actually looks like the type of intensity

edges that we are looking for.

But, let me start by cheating a bit. I can do this very simple by just saying let me pick a threshold
value, and apply thresholding to each pixel.

I keep only pixels where this gradient magnitude square value is bigger than my threshold. Then,
we get something looks like this. (binary image). Each location insider is O or 1 because this is
the result of the thresholding.
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But wht don't we have something out there for instance, which would correspond to this edge
here and similar on the other side? => Poor choice of threshold value.

But we can also see that at some of the places, the amount of pixels that were picked up, it looks
like only one point per line and that's good. But here it actually looks like we got like a fat line of
pixels that are all above the threshold. => Extra points and this is the problem with this
thresholding approach. And cheating not try to find local maxima.

There are good solutions to handle this problem to move away from the pure thresholding idea.

There's also fact that I selected a specific scale o when I computed the derivative and that means
that I am focusing on details that are larger than that scale that I chose. Everything below that
scale got blurred away so we can't really see it anymore.

The Canny edge detector

1. Smooth the image by a Gaussian filter for noise suppression

2. Compute gradient magnitude and orientation images
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Gradient magnitude:

I9fle)- J( 7Y (2)

3. Use double thresholding (hysteresis thresholding) and analysis of connectivity to detect

and link edges. => High and low thresholds.

Start by applying the high threshold value getting a bunch of candidate pixels that are
probably edges, and then we can do a bit of edge thining which is step 4.

And then, we check any pixels that survive the low threshold value and is connected with
one of the high threshold value each pixel. If this is the case, then we also consider this as a
potential edge point. Si we ciykd sirt if add additional points that sort of got lost or that we
didn't catch in the first high thresholding.

4. Apply non-maximum suppression to the gradient magnitude image by considering
neighboring pixels along the gradient direction (edge thinning). => ¥ /FEf &z A{E. Yes,
that's correct. Non-maximum suppression is a technique used in edge detection to thin out
the edges to a single-pixel wide line while preserving their strength or magnitude. The
basic idea is to look at each pixel in the gradient magnitude image and suppress (set to
zero) any pixel that is not a local maximum along the direction of the gradient. This helps
to refine the edges and remove any spurious responses.

Step 3 and 4 are in implementation combined into one step, and can be used on other definitions

of edge points.
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Hysteresis thresholding:
Define two threshold values, low_thres and high_thres such that low_thres < high_thres.
All points with gradient magnitude above high_thres is an edge point

All points between low_thres and high_thres is an edge point if a neighbouring point is a high_thres
edge point

If we do this, below is the example.
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Observing the image, we can clearly see that we now have thin edges so they are only one pixel
wide and it also looks like we've been able to identify points along edge here. That's almost no
holes, otherwise, it looks pretty good. => We get this is because of the combination of step 3 and
4.

Zero crossings of Laplacian of Gaussian filter

Let me just briefly mentioned that it's also possible to find edges that are local maxima. The
gradient magnitude looking at places where the second order derivatives is 0 or at least crosses 0.

This can be done by computing the Laplacian of our image.
XJEFET canny FIRAIEEE (FAT—IF G EIRIBADFIE) . B=EBr /T 0.
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Detection)
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How to implement this?

2 . _
V°L(x,y;0)=L, +L,

Edge points are defined as
locations where

V2L(x,y;0) =0

It's basically called Laplacian of Gaussian filter and that we need to compute the twice derivative
in the x direction and the twice derivative in the y direction, for some specific scale and then
adding these together and we have a feature image a filter response. Then, we go through all
pixels and try to find locations where is equal to 0.
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Local gauge coordinate system: Enforcing rotation invariance

Both gradient magnitude and Laplacian operator are invariant to ratation and translation. Now
there is a general way that we can enforce this form of invariants and there is by using something
called local gauge coordintae system.

And this is particularly relevant to do because we would like that our detectors can find the same
points irrespectively of we rotate an object out in the world out in the scene or we rotate the
image or remove the camera a little bit about like translated, we would like to still be able to
detect the same point.
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For convenience, adapt a local coordinate system (u, v) in place of the global (z, y) coordinate

system.
This is called gauge coordinates (or a Frenet frame)

Aligned according to the local geometry (e.g., gradient vector or eigenvectors of the Hessian
matrix)

Hence, the gauge coordinates rotate together with the image and are independent of the

image coordinate system.
So, let’s look at a concrete example.

Let's choose a coordinate system which is based on the gradient. => Gradient-based gauge

coordinates

At any point in an image, v is parallel to the local gradient. u and v are orthogonal. So that it
actually goes along the intensities.

So here you see two examples two different locations in the image and each of the locations, we
have a local coordinate system, so we have different coordinate systems here.

Rotation of the image does not change the (u, v) coordinates.

If you do this, we can now define various forms of derivatives and edge detectors.



Directional derivatives

We can compute directional derivatives in any direction v from the z, y derivatives.

Consider the directional vector parameterized by an angle 6, v = (cos 6, sin 6)7. § could be the
direction of a local gradient, or gradient orientation or it could be other things.

V L := gradient vector

First and second derivatives along v can be computed by
L,=v"VL=L,cosf+ Lysinf = First derivative in direction v

Ly =v'VL,=v"Hv=L,,cos?0+ 2L, cosfsinf + L,, sin’ @

This means, right now, I can take the yellow coordinate system, I can compute derivatives along
the v direction and along the u direction.

Gradient magnitude is rotational invariant
For the gradient-based gauge coordinates the v direction is

V= (Lm, Ly)T/\ / L:% + L?2J

Computing the first derivative in the v direction gives us,

L,=v"VL=,/L2+ L

Hence, if you rotate the image, then gradient magnitude is unaffected - it is invariant with
respect to rotation of the image. That is, if you consider the same image point as it rotates along
with the image.

Alsoy = (-L,,L;)"and L, =u'VL =-L,L, + L,L, = 0.
Edge detection (Lindeberg's approach)

If we denote the gradient direction by:

v=1/4/L2 + L%(L,, L,)"



Then, edges can be determined as those image points that satisfy the following two conditions
(maxima of the gradient magnitude in the gradient direction):

f(x)

f(x)
()

LR

Edge when:
(x) = 0
(x)< 0

Ly,=v'"VL=,/L2+ L
Ly = L3Log + 2Ly LyLyy + L.Ly, =0
Lyw = L3Lozg + 3L2LyLagy + 3Ly L) Loy, + LiLy, < 0

Interpolating for zero-crossings of L., within the sign-constraints of L, gives a straightforward
method for sub-pixel precision edge detection.

If you do this, you can get results that looks like this.

This is actually showing this detection algorithm and different scales.

Sparse interest point detectors

We are now turn attention to sparse interest points.
Application

3D reconstruction Stereo, multi-view, and structure from motion



If we want to do 3D reconstruction of a scene from multiple view of the scene to multiple images
of the scene. Then you need to solve the matching problem.

In the below illustration, we have two views of this house and in order to do this 3D
reconstruction then basically we need to be able to find the same point out in the scene in both
of these images. For instance, if we are looking at some part where at this window here, and we
need to be able to recognize that we see this scene point here in this image right here. And in the
other image, we see the same point right here. And we need this in order to be able to do
triangularization and basically infer depth and 3D structure.

The point here is that we need to be able to find some points that represent the same physical
point out in the world out in the scene. And we need to be able to find it again in multiple

images of the same scene.
Matching image neighborhoods for 3D vision

Where did the underlying feature go?

In order to do this, we need to think a little bit about what is required for that we can carry out
that this recognition or matching of points.



Now, if I pick a point, let's say we look at this corner here on the house. Then we ask ourselves in

this other image (view get slightly changed to the right). The question is where did this point go
in this image here?

We can easily see that it's probably right here, especially if we consider the corner of the roof, but
we need some way to automate this process to say the other points are not the answer as they are
not in the roof.

Matching: Ideally, we want to find the location in the other image which corresponds to the
same physical location on the building.

It is important to realize that it's not possible to match any random point or patch I would extract
from this image here. I cannot hope to match all of them into this new image.

For instance, if I picked a point in the sky. I would have a hard time saying, if I consider this
point right here. Where did that come from? Is it maybe here or it could also be here. the only
thing we can do is sort of look at the surrounding and say, does it resemble a point that ew are
looking at here. And basically we have no way of uniquely identifying the same point in the
other image.

The point here is that, it is not all points that we can hope to actually match up. It has to do with
the structure around the point.

To be able to figure out which points belongs to which we need a bit of structure:
Sky patches are impossible to match

Curves are also problematic => roof




Salient points
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This is an example of the type of points we would like. This is created with something on the
multi-scale Harris corner detector.

Multi-scale Harris corner detector with localization: Approximately 600 points in each image.

There are points we do not find in both images, but there are many for which we do.
Salient points a.k.a. Interest points

Salient points: Local structure in the image that appear distinct from the surrounding region of
the salient point.

We need an operational definition in order to detect such points!

Terminology: Salient points aka interest points aka keypoints aka features (the literature is full of
confusing inconsistent terminology)

How to automatically detect salient points?

Template matching - correlation



Template

But how do we construct a generic corner template? It's actually a bad idea => won't work
Intensity blobs as salient points

The first algorithm we would look at is intensity blobs.

Local intensity extrema (maxima and minima) are potential candidates for salient points.

Extrema are distinct from their neighboring pixels.

We refer to these extrema as bright or dark blobs.

How do we find intensity extrema?

Compute image derivatives

Blob detector: A simple 1D example
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Detecting blobs by Laplacian of Gaussian filter

Finding extrema in 2D images:

 Find points that are simultaneous intensity extrema in the x and y direction.

e We can solve this in one go by looking for extrema of the Laplacian of Gaussian filter
V2L(z,y;0) = L:(z,y;0) + L,2(z,y; o). => Compute the Laplacian image

IV(V2L(z,y;0))|| = 0 => twice derivative
e Bright blob: V2L(z,y; o) < 0; Dark blob: V2L(z, y; o) > 0
Discrete implementation: Extrema search in 2D

e Bright blob at (z,y): V2L(z,y; o) < than all neighbor pixels

e Dark blob at (z,y) : V2L(z, y; o) > than all neighbor pixels

 choose 4-neighbors or 8-neighbors

e Keep only blobs where |V2L(z,y; 0)| > some threshold value => a way of filtering out

potential noise from the image.

If we do this, we get something below.



Detecting blobs

Yellow = dark blobs, Red = bright blobs

Problem: It also detects points on edges and other non-blob structure
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Pitfalls - Laplacian of Gaussian filter

Not all detected blobs are intensity extrema
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So the particular way of the defining blobs does not necessarrily give you the perect points for
matching.

If we were to do matching, we would probably need additional algorithms to identify all these
points that are actually edge points and remove them because we cannot hope to probably match
them in another image.

But some points are extremely very good for instance, window and roof.

Intensity Corners

The other type of structure that we would like to detect or try to detect this intensity corners. So,
what is meant by that?

[Lg, Ly](:L', Y;0)

Here we have a cut out of the corner of the roof. And we would like to find locations like here.
One way to do this is to look at the gradient vector field. So, here on top of a grayscale version of
the image here. I'm showing each of the gradient vectors corresponding to the pixel that at the
end of the arrow here.



TRE XL A R . BEERIIA BB BEON0, ARYERE L. it bright blob,

But now we are interested in corners but we can still use gradients to get an idea of where the
corner and the key idea with the so-called Harris corner detector is,

Look for locations with two dominating gradient directions
DX A A R 7 ) B R 2= ARA T EJE corner
Intensity corners as salient points

Detecting corners with Harris corner detector

Harris corners are defined as points of local maxima of the Harris corner measure:
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Structure tensor
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The structure tensor is the local covariance of the gradient vector field VL(z,y;0) = (L, L,)T

estimated under the Gaussian window G(z, y; ko),
A(z,y;0) = G(z,y; ko) x (VLVL")

We look for locations (z, y) where the two eigenvalues of A is both large (the sign does not

matter). This corresponds to two dominating directions in the vector field.

If one eigenvalue is large and the other small, then we are at an edge or ridge. If both are small

we are at a flat region or on top of an extrema.
Using R(z, y; o) is a smart way to avoid having to compute the eigenvalues.
R(z,y;0) = det(A) — a trace(A)?
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If you use this, then you get,



Interest point detectors:
Detecting Harris corners (fixed scale)

Dictator: Ying Liu
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