
All learning notes are based on the course "Signal and Image Processing" taught by UCPH.

Features

Features
Image feature detection

Why image features?
Image derivatives revisited

Recall: Differentiation filters amplifies noise
Image derivatives with Gaussian filters
Scale space of derivatives
How to compute Gaussian derivatives in practice
Are derivatives useful?

Intenstiy edges
Edge detection
Algorithm
Edge detection by local maxima of gradient magnitude

The Canny edge detector
Zero crossings of Laplacian of Gaussian filter
Local gauge coordinate system: Enforcing rotation invariance
Directional derivatives
Gradient magnitude is rotational invariant
Edge detection (Lindeberg's approach)

Sparse interest point detectors
Application

Matching image neighborhoods for 3D vision
Salient points
Salient points a.k.a. Interest points

How to automatically detect salient points?
Template matching - correlation
Intensity blobs as salient points
Blob detector: A simple 1D example
Detecting blobs by Laplacian of Gaussian filter
Detecting blobs
Pitfalls - Laplacian of Gaussian filter

Intensity Corners

Intensity corners as salient points

Image feature detection

Why image features?

Marr's layers of abstraction for vision systems (1982)

This is an old picture of how and we can do analysis of images, and it comes from an old book on
how to build vision systems. Even though the content of the model might be debatable, the core
idea is still very much useful for us.

So the concept is that, at the lowest level, any image that we have the broad pixels in the digital
image. But when we want to do any form of analysis or interpretation of what we see in the
image, we need to build up abstractions or based on these pixels.

Concretely, you can think of abstractions as being functions of the pixels, but we would like to
extract some information from the pixels, for instance saying that, if we look at this particular
scene, here we have a tree, we have a camera and a computer. The computer builds up some
abstraction. And at the lowest level, we have something that in image analysis and computer
vision. We call this, features. This could for instance be to identify like trunks, or the parts of an
object this could be by segementation. For instance, I could identify a tree by identify a tree trunk
and could identify the tree crown, leaves, and so on.

But as part of this, we might need to have even more fine detail descriptions of what we see here
in order to actually form up these parts.

Now, on top of this, we might start to do things like inferred depths that means what is the
distance from the camera to objects in the scene?

We can also say something about orientation of objects, what are potential occlusion boundaries
that is one object being in front of another object hiding the object behind?

Maybe the end goal is to form a 3D model of the scene. It could also be to say I am looking at a
tree.

So => This is sort of the pipeline in image analysis. There is something low level going on and
on top of that, we add more and more complex or more abstracts descriptions of what we see in
the scene until at the end, we have a understanding of what we see in the image.

Today, we will look at features and what this means.

所以这个概念是，在最低层次上，我们有数字图像中的像素。但是当我们想要对图像进⾏任
何形式的分析或解释时，我们需要基于这些像素构建抽象。

具体来说，您可以将抽象视为像素的函数，但是我们想要从像素中提取⼀些信息，例如说，
如果我们观察这个特定的场景，我们有⼀棵树、⼀台相机和⼀台电脑。电脑建⽴了⼀些抽
象。在最低层次上，我们在图像分析和计算机视觉中称之为特征。这可以⽤于识别像树⼲⼀
样的物体部分，或者是通过分割识别对象的各个部分。例如，我可以通过识别树⼲来识别树
冠、叶⼦等。

但是作为此过程的⼀部分，我们可能需要对所看到的细节进⾏更详细的描述，以实际形成这
些部分。

此外，我们可能会开始进⾏类似推断深度的操作，即意味着相机到场景中物体的距离是多
少？

我们还可以说⼀些关于物体⽅向的信息，可能会有潜在的遮挡边界，即⼀个物体位于另⼀个
物体前⾯，隐藏在其后⾯的物体？

也许最终⽬标是形成场景的三维模型，也可能是说我在看⼀棵树。

所以 => 这就是图像分析中的流⽔线。有⼀些低层次的事情正在发⽣，然后我们在其上添加更
复杂或更抽象的描述，直到最后，我们对图像中所看到的内容有了理解。

今天，我们将了解图像特征及其含义。

我的理解：在图像分析中，电脑⾸先通过数字图像中的像素形成电⼦信号，然后通过从信号
中提取特征（如树⼲、树冠、叶⼦等）的函数来分析图像。这是最底层的操作，然后我们可
以通过将更多的抽象层次加⼊到这些特征中，来进⼀步分析和解释图像中所看到的内容。

Image derivatives revisited

Recall: Differentiation filters amplifies noise

Image derivatives with Gaussian filters

Use a Gaussian filter to smooth prior to computing image derivatives

在计算图像的导数时，通常会出现噪声或细节信息，这可能会导致导数的误差或不准确性。

因此，在计算导数之前，通常会使⽤⾼斯滤波器平滑图像，以减少这些噪声或细节信息的影

响。⾼斯滤波器可以平滑图像并消除⾼频噪声，从⽽使图像变得更加平滑，有助于更精确地

计算导数。⾼斯滤波器使⽤⾼斯核函数对图像进⾏卷积操作，这个⾼斯核函数有⼀个参数 ，
⽤于控制滤波器的平滑程度。

Note that due to the commutative property of derivatives and convolution: (换元特性)

Hence we only need to compute derivatives of the Gaussian prior to convolution,

这句话的意思是由于求导和卷积操作满⾜交换律，我们可以选择先对⾼斯函数进⾏求导再与
图像进⾏卷积，这样可以减少计算量。因为对⾼斯函数求导可以使⽤预先计算的⼀组卷积核
来实现，这些卷积核被称为⾼斯差分算⼦（Gaussian Derivatives）。通过使⽤这些卷积核，我
们可以避免对每个像素都进⾏⾼斯滤波和求导的操作。原本是先⽤⾼斯滤波卷积图像再求
导，由于交换律，可以先对⾼斯滤波求导再卷积。

 这个表⽰⼀个图像 经过⾼斯滤波 以后得到的平滑图像 ，其
中 和 是图像中的坐标， 是⾼斯滤波的参数，控制滤波的程度。可以理解为 是对 进
⾏⼀种平滑处理后得到的图像。

Scale space of derivatives

在计算机视觉和图像处理领域中，scale-space（尺度空间）是指⽤不同的尺度（例如不同的⾼
斯滤波器⼤⼩）来分析图像的⽅法。使⽤尺度空间可以让我们在不同的尺度下分析图像，从
⽽获得更丰富的图像信息。例如，在分析⽬标物体的边缘时，我们可以使⽤不同尺度的⾼斯
滤波器来平滑图像并计算不同尺度下的边缘。这种⽅法可以让我们在不同尺度下检测到不同
⼤⼩和形状的边缘，从⽽提⾼我们对图像的理解和分析。因此，尺度空间是图像处理和计算

机视觉中⾮常重要的概念。

In the context of image processing and computer vision, the scale-space of derivatives refers to a
sequence of smoothed and differentiated images obtained by convolving an input image with
Gaussian filters of varying scales (represented by the parameter σ).

 represents the output of applying the Gaussian filter with standard deviation σ to the
input image I at location (x,y). This operation smooths the input image to different degrees
depending on the scale σ, effectively removing high-frequency details and noise.

 represents the derivative of the smoothed image with respect to the x-axis, obtained
by convolving the smoothed image with the derivative of the Gaussian filter with respect to x,
denoted as ∂Gσ/∂x. Similarly, represents the derivative of the smoothed image with
respect to the y-axis, obtained by convolving the smoothed image with the derivative of the
Gaussian filter with respect to y, denoted as ∂Gσ/∂y.

So, = represents the convolution of the input image with the
derivative of the Gaussian filter with respect to x, which results in a smoothed and differentiated
image with respect to the x-axis.

How to compute Gaussian derivatives in practice

In Python, we can use scipy.ndimage.gaussian_filter

Computing the x-derivative at scale given by sigma:

这段代码是⽤Python中的scipy.ndimage.gaussian_filter函数来计算⾼斯导数的。

sigma = 1.0表⽰⾼斯滤波器的标准差为1.0。

derivative_order = (0, 1)表⽰我们要计算的是x⽅向上的⼀阶导数。这⾥使⽤的是“⾏-列”
格式，即第⼀个元素表⽰⾏⽅向上的导数，第⼆个元素表⽰列⽅向上的导数。所以这个元组
实际上表⽰计算x⽅向上的⼀阶导数。

Lx = gaussian_filter(I, sigma, order=derivative_order)表⽰对图像I进⾏⾼斯滤波并
计算x⽅向上的⼀阶导数，结果存储在Lx中。order参数指定了要计算的导数的阶数和⽅向。
在这⾥，order=derivative_order表⽰计算derivative_order中指定的⽅向和阶数的导
数。

如果是 y ⽅向上的，则将 (0, 1) => (1, 0) 即可。

Are derivatives useful?

Derivatives permit the calculation of many invariants which are functions that are invariant
with respect to certain transformations of the image domain.

Invariants can be used to define image features.

Intensity edges, ridges, corners are all examples of image features.

导数可以计算许多不变量，即对于图像域的某些变换具有不变性的函数。这些不变量可以⽤
于定义图像特征。例如，强度边缘、脊线和⾓点都是图像特征的例⼦。

Intenstiy edges

Then, let's start by looking at a concrete type of image features. Namely, the intensity edges.

Edge detection

Useful for segmentation and object boundaries

An intensity edge is defined by locations in the image of abrupt changes in intensities.

sigma = 1.0

derivative_ordre = (0, 1) # Row-col format

Lx = gaussian_filter(I, sigma, order=derivative_order)

So for instance, if we look at this image, there are several places where the intensities go from
darker to brighter.

For instance, we have this person's shirt here, we can sort of easily see that something going on
and actually here even though we can see it as a white shirt, it looks a bit dark here and then,
you have sort of brighter pixels out in the asphalt. => 就是在这个图⾥⾯，我们看左边这个⼈的
衬衫，虽然它是⽩⾊的，但是和路上的沥青相⽐，沥青的强度更⼤。

So if we take a cut through what a part of the image, so let me just pick out a line here. Cut the
pixels out and visualize these.

Here, we can see in the background, there's some asphalt here appears slightly brighter and that
is seen as high intensity values in the image.

Similarly, on this person's arm here, we have sort of darker pixels, that means we have lower
intensity values.

So, we can sort of seen that through this cut here, we have something that looks a bit like abrupt
chnages in the intensity level. Just moving along the line from inside the arm out ot asphalt.

So, from the right part and all the way into the asphalt (left part).

This is basically what we call an intensity edge and of course if we consider something like this
person's arm, we could probably find like several locations here where we have an abrupt change
probably like a complete curve of pixels here with this but looks something similar to this.

This is an example of an intensity edge.

Algorithm

And we can make algorithms to detect this, but let's start with a simplified case here.

In blue, I have an idealized edge, idealized intensity. So again, you can think of this as being cut
out of some image with taking out a line of pixels and look at the values there.

I also plot the first order derivative that is reddish curve, and the second order derivate which is
the yellow curve. And the third order derivative which is purple curve.

Now, where if I have this blue change intensity, where would I like the edge to be? Does it start
down here or does it start up here. Or do we want to have the point that sort of at the location
where the edge is changing the most? So that's a choice we have to make.

But a common decision for this is to say. Let me go for the location of most change. So, if we look
at this curve, it's changes fast here. So, having the steepest descend or ascend depending on
whether you go up or down. This can easily define by looking at the derivative.

So, this location here with the most change that's basically given by finding a a local maximum
of the first order derivative to do that. You can just remember basic function analysis that then
we probably just need to find locations where the second deriavtive is equal to zero. And we also
need to check that the third derivative is negative at this location.

在蓝⾊曲线中，我画了⼀条理想化的边缘和理想化的强度变化曲线。因此，您可以将其视为
从某个图像中切出⼀⾏像素，并查看那⾥的像素值。

我还绘制了⼀阶导数（红⾊曲线）、⼆阶导数（黄⾊曲线）和三阶导数（紫⾊曲线）。如果
我有这种蓝⾊的强度变化，那么我想要的边缘在哪⾥呢？它是从这⾥开始还是从这⾥开始？
或者我们希望在边缘变化最⼤的位置？这是我们需要做出的决定。

但是通常的决策是说。让我选择变化最⼤的位置。因此，如果我们观察这条曲线，它在这⾥
变化最快。因此，在具有最⼤变化的位置，我们可以通过查找⼀阶导数的局部最⼤值来找到
边缘的位置。为了做到这⼀点，您只需要记住基本函数分析，然后我们可能只需要找到⼆阶
导数等于零的位置。并且我们还需要检查这个位置的三阶导数是否为负数。

This would be a way to define an edge.

I define this in 1D, so we need to extend this to 2D.

Edge detection by local maxima of gradient magnitude

In order to do this, we use the tools from that I presented in the scale space videos that we can
compute this gradient magnitude which is that we take for the two first order derivative so that
first order derivative along the x-axis and the first order derivative along the y-axis.

We think of that as forming a vector namely the gradient vector and then we compute the length
of this vector.

Or equivalently, we could also compute the gradient magnitude squared. That the only difference
areas whether or not I take the square root.

It does not matter whether I take the square or not, it does not change location.

So, how can I use this?

What we just saw here in before in 1D, what would be to look for location where the expression
has local maxima.

So this is maxima both across and in space.

For the fun of it, I've computed is gradient magnitude squared the result of that of applying it to
the image.

So we have bright values large values at something that actually looks like the type of intensity
edges that we are looking for.

But, let me start by cheating a bit. I can do this very simple by just saying let me pick a threshold
value, and apply thresholding to each pixel.

I keep only pixels where this gradient magnitude square value is bigger than my threshold. Then,
we get something looks like this. (binary image). Each location insider is 0 or 1 because this is
the result of the thresholding.

梯度是根据每个像素的 x 和 y 的值计算出来的，具体地，对于⼀个图像上的像素 ，它的
梯度可以表⽰为：

其中 和 分别是在 处计算的图像在⽔平和竖直⽅向上的梯度值。

⾄于阈值，它通常是根据具体的任务和图像特性来设置的。例如，在边缘检测中，我们希望
尽可能地准确地检测出图像中的边缘，因此可能需要设置⼀个较低的阈值，以保留更多的梯
度强度信息。⽽在⼀些特定的应⽤中，⽐如⽬标检测和图像分割等任务中，可能需要设置⼀
个较⾼的阈值，以过滤掉⼀些不相关的信息。

给出的公式和 表达的是同⼀个意思，其中 和 分别表⽰图
像 在 和 ⽅向上的梯度， 表⽰梯度的⼤⼩。⽽ 是⾼斯滤波器的参数，⽤于控制滤波器
的⼤⼩。在计算梯度之前，可以先⽤⾼斯滤波器对图像进⾏平滑处理，以减少噪声的影响。
越⼤，滤波器的⼤⼩就越⼤，平滑的效果也就越好，但是边缘的细节也就越模糊。

But wht don't we have something out there for instance, which would correspond to this edge
here and similar on the other side? => Poor choice of threshold value.

But we can also see that at some of the places, the amount of pixels that were picked up, it looks
like only one point per line and that's good. But here it actually looks like we got like a fat line of
pixels that are all above the threshold. => Extra points and this is the problem with this
thresholding approach. And cheating not try to find local maxima.

There are good solutions to handle this problem to move away from the pure thresholding idea.

There's also fact that I selected a specific scale when I computed the derivative and that means
that I am focusing on details that are larger than that scale that I chose. Everything below that
scale got blurred away so we can't really see it anymore.

The Canny edge detector

1. Smooth the image by a Gaussian filter for noise suppression

2. Compute gradient magnitude and orientation images

什么是 Orientation images？在尺度空间中，Orientation images指的是对于每个尺度，图
像中的每个像素都有⼀个⽅向信息。它们可以通过计算图像中每个像素的局部⽅向来获
得，通常使⽤梯度⽅向来表⽰。因此，对于每个尺度，我们可以得到⼀个⽅向图像，它
可以⽤来描述在该尺度下的⽅向特征。这些⽅向图像可以⽤于许多计算机视觉任务，如
纹理分类、形状识别等。

3. Use double thresholding (hysteresis thresholding) and analysis of connectivity to detect
and link edges. => High and low thresholds.

Start by applying the high threshold value getting a bunch of candidate pixels that are
probably edges, and then we can do a bit of edge thining which is step 4.

And then, we check any pixels that survive the low threshold value and is connected with
one of the high threshold value each pixel. If this is the case, then we also consider this as a
potential edge point. Si we ciykd sirt if add additional points that sort of got lost or that we
didn't catch in the first high thresholding.

4. Apply non-maximum suppression to the gradient magnitude image by considering
neighboring pixels along the gradient direction (edge thinning). => 找局部最⼤值。Yes,
that's correct. Non-maximum suppression is a technique used in edge detection to thin out
the edges to a single-pixel wide line while preserving their strength or magnitude. The
basic idea is to look at each pixel in the gradient magnitude image and suppress (set to
zero) any pixel that is not a local maximum along the direction of the gradient. This helps
to refine the edges and remove any spurious responses.

Step 3 and 4 are in implementation combined into one step, and can be used on other definitions
of edge points.

⾮极⼤值抑制（NMS）和双阈值处理（double thresholding）。⾮极⼤值抑制是通过⽐较邻边
像素上的梯度来确认是否为真正的局部最⼤值，从⽽帮助减少噪声引起的误检。⽽双阈值处
理则是将所有梯度值分为强边缘、弱边缘和⾮边缘三类，从⽽进⼀步过滤掉⾮边缘和弱边
缘，保留强边缘，形成连续的边缘轮廓。

Hysteresis thresholding:

Define two threshold values, low_thres and high_thres such that low_thres < high_thres.

All points with gradient magnitude above high_thres is an edge point

All points between low_thres and high_thres is an edge point if a neighbouring point is a high_thres
edge point

If we do this, below is the example.

⾮极⼤值抑制（Non-Maximum Suppression，简称NMS）是指在边缘检测中，通过⽐较梯度⽅
向上的像素，找到梯度幅值的局部最⼤值，来抑制⾮极⼤值，从⽽保留较精确的边缘。⼀般
来说，当梯度幅值图像上的⼀个像素是其在梯度⽅向上的相邻两个像素中幅值最⼤的时候，
我们称其为局部极⼤值。

在Canny边缘检测算法中，使⽤NMS算法来抑制⾮极⼤值，可以通过检测像素点的梯度和⽅
向，保留在梯度⽅向上的局部最⼤值。然后，通过设置两个不同的阈值（⾼阈值和低阈
值），将梯度幅值分成强边缘和弱边缘两个部分。所有⼤于⾼阈值的边缘点都被视为真正的
边缘点，⽽所有⼩于低阈值的点都被认为是⾮边缘点。在介于两个阈值之间的边缘点将被根
据其是否与真正的边缘点相连⽽被视为边缘点或⾮边缘点。这样就形成了Canny边缘检测的最
终结果。

Observing the image, we can clearly see that we now have thin edges so they are only one pixel
wide and it also looks like we've been able to identify points along edge here. That's almost no
holes, otherwise, it looks pretty good. => We get this is because of the combination of step 3 and
4.

Zero crossings of Laplacian of Gaussian filter

Let me just briefly mentioned that it's also possible to find edges that are local maxima. The
gradient magnitude looking at places where the second order derivatives is 0 or at least crosses 0.

This can be done by computing the Laplacian of our image.

这是基于 canny 算法的改进（我们⼀开始上课的那个算法），看三阶导⼩于 0。

这种算法是基于Canny算法的改进，称为“⼆次微分边缘检测”（Second Derivative Edge
Detection）。

在这种算法中，我们先对图像应⽤⾼斯滤波进⾏平滑，然后计算⼆阶导数（也称为拉普拉斯
算⼦），即找到图像中的所有⾼斯平滑的极值点。这些极值点可能对应于图像中的边缘。但
是，这种⽅法往往会导致检测到⼤量噪声和边缘。

为了减少噪声和增加边缘的连续性，该算法还要求在每个极值点处计算三阶导数（也称为峭
度）。如果峭度⼩于某个阈值，则该点被认为是噪声并被抑制。如果峭度⼤于阈值，则该点
被认为是边缘，并被保留。

尽管这种算法可以在⼀定程度上提⾼边缘检测的质量，但它通常⽆法检测到较弱的边缘，并
且会在边缘处产⽣不必要的噪声。与Canny算法相⽐，它也缺少双阈值和⾮极⼤值抑制等重要
步骤。

How to implement this?

It's basically called Laplacian of Gaussian filter and that we need to compute the twice derivative
in the x direction and the twice derivative in the y direction, for some specific scale and then
adding these together and we have a feature image a filter response. Then, we go through all
pixels and try to find locations where is equal to 0.

但是如果你只看哪边等于0是远远不够的，在现实中，你还得去看符号变化。=> 拉普拉斯算⼦
在图像边缘检测中被⽤来检测⼆阶导数是否为0。如果⼆阶导数为0，表⽰在该点附近，图像
灰度变化趋势发⽣了变化，因此可能是边缘点。但是，如果拉普拉斯值为0的点周围的灰度变
化⽅向不⼀致，那么这个点并不能算作⼀个真正的边缘点。因此，需要通过判断周围的灰度
变化⽅向来确定这个点是否为边缘点。如果该点周围灰度变化⽅向⼀致，则认为该点是⼀个
真正的边缘点。

灰度变化⽅向⼀致指的是⼀组像素的灰度值变化在相邻像素之间具有相同的⽅向。在边缘检
测中，我们希望找到的边缘是由于灰度值的突然变化所引起的，⽽这种变化通常会伴随着⼀
个明显的变化⽅向。因此，通过检测像素灰度值变化⽅向⼀致的区域，我们可以识别出图像
中的边缘。

现在我们已经有了三种边缘检测⽅法，第⼀种是普通的，通过计算梯度的和的⼤⼩，每个像
素的局部最⼤值 并直接⽤threshold进⾏⽐较。第⼆种是利⽤canny算法，达到近乎完
美的边缘检测。第三种是通过利⽤拉普拉斯算⼦ 来求⼆阶导然后再看⽅向。

｜ ｜

Local gauge coordinate system: Enforcing rotation invariance

Both gradient magnitude and Laplacian operator are invariant to ratation and translation. Now
there is a general way that we can enforce this form of invariants and there is by using something
called local gauge coordintae system.

And this is particularly relevant to do because we would like that our detectors can find the same
points irrespectively of we rotate an object out in the world out in the scene or we rotate the
image or remove the camera a little bit about like translated, we would like to still be able to
detect the same point.

在图像处理中，Gauge 坐标系通常⽤于描述局部图像结构的⽅向性和形状。它是⼀种基于局部
坐标系的数学表达⽅式，⽤于描述给定点周围的局部图像结构。

具体来说，Gauge 坐标系是⼀种通过在每个图像位置引⼊局部坐标系来描述局部结构的⽅法。
在每个点处，局部坐标系的⽅向被定义为图像梯度的⽅向，坐标系的原点被定义为该点本⾝。
这种⽅法使得我们可以描述出在图像中每个点周围的⽅向性信息，从⽽提取出图像中的⼀些局
部特征。

在实际应⽤中，Gauge 坐标系可以被⽤于计算⼀些图像处理中的特征，⽐如边缘⽅向、纹理⽅
向和局部形状等。

For convenience, adapt a local coordinate system in place of the global coordinate
system.

This is called gauge coordinates (or a Frenet frame)

Aligned according to the local geometry (e.g., gradient vector or eigenvectors of the Hessian
matrix)

Hence, the gauge coordinates rotate together with the image and are independent of the
image coordinate system.

So, let's look at a concrete example.

Let's choose a coordinate system which is based on the gradient. => Gradient-based gauge
coordinates

At any point in an image, is parallel to the local gradient. and are orthogonal. So that it
actually goes along the intensities.

So here you see two examples two different locations in the image and each of the locations, we
have a local coordinate system, so we have different coordinate systems here.

Rotation of the image does not change the coordinates.

If you do this, we can now define various forms of derivatives and edge detectors.

Directional derivatives

We can compute directional derivatives in any direction from the derivatives.

Consider the directional vector parameterized by an angle . could be the
direction of a local gradient, or gradient orientation or it could be other things.

 := gradient vector

First and second derivatives along can be computed by

This means, right now, I can take the yellow coordinate system, I can compute derivatives along
the direction and along the direction.

Gradient magnitude is rotational invariant

For the gradient-based gauge coordinates the direction is

Computing the first derivative in the direction gives us,

Hence, if you rotate the image, then gradient magnitude is unaffected - it is invariant with
respect to rotation of the image. That is, if you consider the same image point as it rotates along
with the image.

Also and .

Edge detection (Lindeberg's approach)

If we denote the gradient direction by:

Then, edges can be determined as those image points that satisfy the following two conditions
(maxima of the gradient magnitude in the gradient direction):

Interpolating for zero-crossings of within the sign-constraints of gives a straightforward
method for sub-pixel precision edge detection.

If you do this, you can get results that looks like this.

This is actually showing this detection algorithm and different scales.

Sparse interest point detectors

We are now turn attention to sparse interest points.

Application

3D reconstruction Stereo, multi-view, and structure from motion

If we want to do 3D reconstruction of a scene from multiple view of the scene to multiple images
of the scene. Then you need to solve the matching problem.

In the below illustration, we have two views of this house and in order to do this 3D
reconstruction then basically we need to be able to find the same point out in the scene in both
of these images. For instance, if we are looking at some part where at this window here, and we
need to be able to recognize that we see this scene point here in this image right here. And in the
other image, we see the same point right here. And we need this in order to be able to do
triangularization and basically infer depth and 3D structure.

The point here is that we need to be able to find some points that represent the same physical
point out in the world out in the scene. And we need to be able to find it again in multiple
images of the same scene.

Matching image neighborhoods for 3D vision

Where did the underlying feature go?

In order to do this, we need to think a little bit about what is required for that we can carry out
that this recognition or matching of points.

Now, if I pick a point, let's say we look at this corner here on the house. Then we ask ourselves in
this other image (view get slightly changed to the right). The question is where did this point go
in this image here?

We can easily see that it's probably right here, especially if we consider the corner of the roof, but
we need some way to automate this process to say the other points are not the answer as they are
not in the roof.

Matching: Ideally, we want to find the location in the other image which corresponds to the
same physical location on the building.

It is important to realize that it's not possible to match any random point or patch I would extract
from this image here. I cannot hope to match all of them into this new image.

For instance, if I picked a point in the sky. I would have a hard time saying, if I consider this
point right here. Where did that come from? Is it maybe here or it could also be here. the only
thing we can do is sort of look at the surrounding and say, does it resemble a point that ew are
looking at here. And basically we have no way of uniquely identifying the same point in the
other image.

The point here is that, it is not all points that we can hope to actually match up. It has to do with
the structure around the point.

To be able to figure out which points belongs to which we need a bit of structure:

Sky patches are impossible to match

Curves are also problematic => roof

Salient points

This is an example of the type of points we would like. This is created with something on the
multi-scale Harris corner detector.

Multi-scale Harris corner detector with localization: Approximately 600 points in each image.

There are points we do not find in both images, but there are many for which we do.

Salient points a.k.a. Interest points

Salient points: Local structure in the image that appear distinct from the surrounding region of
the salient point.

We need an operational definition in order to detect such points!

Terminology: Salient points aka interest points aka keypoints aka features (the literature is full of
confusing inconsistent terminology)

How to automatically detect salient points?

Template matching - correlation

But how do we construct a generic corner template? It's actually a bad idea => won't work

Intensity blobs as salient points

The first algorithm we would look at is intensity blobs.

Local intensity extrema (maxima and minima) are potential candidates for salient points.

Extrema are distinct from their neighboring pixels.

We refer to these extrema as bright or dark blobs.

How do we find intensity extrema?

Compute image derivatives

Blob detector: A simple 1D example

⼀阶导为 0 说明该位置可能为极值或者原函数为直线，即⽆⼤⼩变化。若加上⼆阶导不为0则
可确定该位置为原函数极值点。

Detecting blobs by Laplacian of Gaussian filter

Finding extrema in 2D images:

Find points that are simultaneous intensity extrema in the and direction.

We can solve this in one go by looking for extrema of the Laplacian of Gaussian filter
. => Compute the Laplacian image

Bright blob: ; Dark blob:

Discrete implementation: Extrema search in 2D

Bright blob at : than all neighbor pixels

Dark blob at than all neighbor pixels

choose 4-neighbors or 8-neighbors

Keep only blobs where some threshold value => a way of filtering out
potential noise from the image.

If we do this, we get something below.

Detecting blobs

Yellow = dark blobs, Red = bright blobs

使⽤拉普拉斯⾼斯滤波器检测blob的过程中，可能会检测到⼀些不是blob的结构，例如边缘和
其他⾮blob结构。这是由于拉普拉斯算⼦对于所有的图像结构都敏感，因此会在边缘和其他结
构上产⽣响应。这些响应通常会被认为是误检测，可以通过应⽤阈值和其他后处理技术来减
少误检测的数量。此外，如果需要检测的是特定形状和⼤⼩的blob，则可以使⽤不同⼤⼩的⾼
斯核来⽣成拉普拉斯⾼斯滤波器，以便在不同的尺度下检测blob。

边缘和blob是两种不同的结构，在图像中有着不同的表现形式。边缘通常是由图像中的强度变
化或者颜⾊变化引起的，⽽blob则是由图像中的区域内部的强度变化引起的，它通常具有⼀个
局部的峰值。在Laplacian of Gaussian（LoG）⽅法中，通过使⽤⾼斯平滑和拉普拉斯算⼦来检
测blob，⽽边缘则往往会被忽略掉。这是因为边缘上的强度变化通常⽐较陡峭，因此其⼆阶导
数（拉普拉斯）会出现跳跃，不满⾜⾼斯函数的平滑性质，所以LoG滤波器很难在边缘上检测
出blob。

Pitfalls - Laplacian of Gaussian filter

Not all detected blobs are intensity extrema

在⼆阶导数为极值的情况下，我们能够辨认出原函数不是对应的局部最⼤值。

So the particular way of the defining blobs does not necessarrily give you the perect points for
matching.

If we were to do matching, we would probably need additional algorithms to identify all these
points that are actually edge points and remove them because we cannot hope to probably match
them in another image.

But some points are extremely very good for instance, window and roof.

Intensity Corners

The other type of structure that we would like to detect or try to detect this intensity corners. So,
what is meant by that?

Here we have a cut out of the corner of the roof. And we would like to find locations like here.
One way to do this is to look at the gradient vector field. So, here on top of a grayscale version of
the image here. I'm showing each of the gradient vectors corresponding to the pixel that at the
end of the arrow here.

你看这些点都往⼀个点指，被指的那个点梯度长度为0，根据定义，他就是bright blob。

But now we are interested in corners but we can still use gradients to get an idea of where the
corner and the key idea with the so-called Harris corner detector is,

Look for locations with two dominating gradient directions

区域有两个不同的⽅向的梯度=》很有可能是 corner

Intensity corners as salient points

Detecting corners with Harris corner detector

Harris corners are defined as points of local maxima of the Harris corner measure:

Intensity corner（强度⾓点）和Intensity blob（强度斑点）是计算机视觉中⽤于描述图像特征的
两种不同的概念。强度⾓点指的是图像中局部区域内强度变化最为明显的点，通常被认为是
图像中的⾓点。⽽强度斑点则是指图像中具有明显强度峰值的局部区域，通常被认为是图像
中的斑点。这两种特征在图像处理和计算机视觉中具有⼴泛的应⽤，例如在图像拼接、⽬标
跟踪和物体识别等领域中被⼴泛使⽤。

Structure tensor

结构张量是⼀种⽤于计算图像局部区域内灰度值变化特征的数学⼯具。在Harris⾓点检测算法
中，结构张量⽤于描述图像中某个像素点周围的灰度变化情况，从⽽确定该像素点是否为⾓
点。结构张量可以表⽰为⼀个矩阵，其中每个元素表⽰该像素点周围某个⽅向上的灰度变化
程度。在Harris⾓点检测算法中，通过计算结构张量的特征值和响应函数来判断该像素点是否
为⾓点。

The structure tensor is the local covariance of the gradient vector field
estimated under the Gaussian window ,

We look for locations where the two eigenvalues of is both large (the sign does not
matter). This corresponds to two dominating directions in the vector field.

If one eigenvalue is large and the other small, then we are at an edge or ridge. If both are small
we are at a flat region or on top of an extrema.

Using is a smart way to avoid having to compute the eigenvalues.

这⾥是在使⽤ Harris ⾓点检测算法，通过计算图像中每个像素点周围像素的梯度⽅向和梯度
强度，构造出该像素点周围的结构张量 。结构张量描述了该像素点周围的梯度分布
情况。

通过计算结构张量的两个特征值，可以确定该像素点周围的梯度分布情况，从⽽判断该点是
否为⾓点、边缘或平坦区域。如果该点周围的梯度分布情况表现为两个⽅向上都有较强的梯
度变化，则说明该点为⾓点；如果只有⼀个⽅向上有较强的梯度变化，则说明该点为边缘；
如果两个⽅向上都没有很强的梯度变化，则说明该点处于平坦区域或者是图像的局部极值
点。

为了避免计算结构张量的两个特征值，Harris ⾓点检测算法使⽤了响应函数 ，其中
响应函数的值被定义为结构张量的特征值之积减去⼀个经验常数 与结构张量特征值之和的
平⽅。通过判断响应函数的⼤⼩，可以判断该点是否为⾓点。

If you use this, then you get,

Dictator: Ying Liu
Date: March 15, 2023

	Features
	Image feature detection
	Why image features?
	Image derivatives revisited
	Recall: Differentiation filters amplifies noise
	Image derivatives with Gaussian filters
	Scale space of derivatives L_{x}(x, y; \sigma) = I * \frac{\partial G_\sigma}{\partial_x}
	How to compute Gaussian derivatives in practice
	Are derivatives useful?

	Intenstiy edges
	Edge detection
	Algorithm
	Edge detection by local maxima of gradient magnitude
	The Canny edge detector
	Zero crossings of Laplacian of Gaussian filter
	Local gauge coordinate system: Enforcing rotation invariance
	Directional derivatives
	Gradient magnitude is rotational invariant
	Edge detection (Lindeberg's approach)

	Sparse interest point detectors
	Application
	Matching image neighborhoods for 3D vision
	Salient points
	Salient points a.k.a. Interest points

	How to automatically detect salient points?
	Template matching - correlation
	Intensity blobs as salient points
	Blob detector: A simple 1D example
	Detecting blobs by Laplacian of Gaussian filter
	Detecting blobs
	Pitfalls - Laplacian of Gaussian filter

	Intensity Corners
	Intensity corners as salient points

