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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Polygons and visibility

oot JATUAET o) A

Two points in a simple polygon can sge each other if their
connecting line segment is in the polygon
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

Art gallery problem

131, Bl

Art Gallery*Problem: How many cameras are needed to
guard a given art gallery so that every point is seen?

~
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

Art gallery problem
sy W 4w e (/[ It e be blockd
pwill =2 Rl minlmive. = N?’/}wy(] .

In geometry terminology: How many pointsfare needed in a
simple polygon with n vertices so that every point in the

olygon is seen?
polyg th“m inimyum | ymber o hesv COTES

Ve dan

that Canv je&

The optimization problem is computationally difficult wmf*‘"],

@ Art Gallery Theorem: |n/3| cameras are occasionally
necessary but always sufficient
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

Art gallery problem

Art Gallery Theorem: |n/3| cameras are occasionally
necessary but always sufficient
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

Triangulation, diagonal

Wh 3 | ry %
y are |n/3| cameras always ;ﬁ)@/‘y =

enough? mﬁ%@m

PM "Assumel polygon P is triangulated: a 'lT")?‘”’ .
decomposition of P into disjoint
triangles by a maximal set of 5 ﬁﬁ
non-intersecting diagonals

Diagonal of P: open line segment
that connects two vertices of P and
fully lies in the interior of P

WNe e owt The P"'/ﬁ“ inpres a'”"j ciagmals.
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

A triangulation always exists

r
Lemma: A simple polygon with n vertices ' \/ wrvf/""\;
can be triangulated, and always u o~ /\, J s
With\n — 2 triangles Sy ha
——F N
Proof: nductlon nn. lfn=23,itis >, 7
trivial Wwyg wled , nv A Wra«fﬁ'f? /\‘/f‘n/’} N2
W \ /\é-'
Assume n > 3. ~
vertex v and its two neighbors utgnd w. o~
—_ SN o
Elther uw is a diagonal (case 1), or part of U N
the boundary of P is in Auvw (case 2) < !
AN |
Case 2: choose the vertex ¢ in Auvw v H
farthest from the line through u and w, ™\
then vt must be a diagonal A

ve canv whe + Wvﬁ dlagon 4l stvh‘v the r.oﬂm inte ¥ f‘:/‘/)f ) S —___ -

Computational Geometry Lecture 4: Triangulating a polygon



Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

A triangulation always exists
iy WIS S UL gy aphyg v s

AN 1A
In case 1, uw cuts the polygon into a triangle and a simple
polygon with n — 1 vertices, and we apply induction

In case 2, vt cuts the polygon into two simple polygons with
m and n — m + 2 vertices, 3 < m <n — 1, and we also apply
induction

By induction, the two polygons can be triangulated using

m—2and n—m-+ 2 —2=n—m triangles. So the origi
polygon is triangulated usingm —2 + n—m=n.— 2

] PO
triangles ] Ll
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Visibility in polygons
Triangulation
Proof of :he Art gallery theorem

Motivation

A 3-coloring always exists

Wwe coam alm; t/n‘atvuihu 1 Po)/jrn .A
&b, R AR A TR,

ARy T .

Observe: the dual graph of a triangulated
simple polygon is a tree A

Dual graph: each\h@gives a node; two
nodes are connected if the faces are

adjacent
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

A 3-coloring always exists

Lemma: The vertices of a triangulated

simple polygon can always be 3-c Io:(ﬁ/Wy\ jﬁ%
Proof: Induction on theﬁ%%’f % G A .

triangles in the triangulation. Bas@t‘é}. ]
True for a triangle

Every tree has a leaf, in particular the one

that is the dual graph. Remove the
TN

corresponding triangle from the
W
d

triangulated polygon, color its vertices, add
the triangle back, and let the extra vertex
have the color different from its neighbors

Computational Geometry Lecture 4: Triangulating a polygon



Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

A 3-coloring always exists
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

In/3| cameras are enough

For a 3-colored, triangulated simple
polygon, one of the color classes is used by

This argument is called 7
the pigeon-hole principle |
PIs PP R we hoae veoryive) ﬁ 3

1&-\‘ / L@’ \én polurs  and Fhen avh e hes a corner
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Visibility in polygons
Triangulation
Proof of the Art gallery theorem

Motivation

In/3| cameras are enough

Question: Why does the proof fail when the polygon has
@ when we do The nductive  step . e
50/1 -ﬁhorb we ?M& a I0”f /IDNW\ the YVel fn dnced

ufthm it M there iy whele 0N The pelyqrm

Yo
«M rhe VI 7 frow Jhon there canv by

then The Frien I a/f
. hore 'y W 1°
ooy ond-hen T

Yhgm you meed e guarts.
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Towards an efficient algorithm
Partitioning into monotone pieces

Triangulating a polygon Triangulating a monotone polygon
Triangulating a simple polygon

Two-ears for triangulation

SRS

Using the two-ears theorem:
(an ear consists of three consecutive
vertices u, v, w where ww is a diagonal)

Find an ear, cu
triangulate the rest iterativel

Question: Why does every simple polygon
have an ear?

Question: How efficient is this algorithm?
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Overview

LS
l

A simple polygon is y-monotone iff any
horizontal line intersects it in a connected

set (or not at all) = W «?{& 7m§?j>’ VV%“O?@

Use plane sweep to partition the polygon
into y-monotone polygons

Then triangulate each y-monotone polygon
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Monotone polygons

A y-monotone polygon has @vertex a
1 ’\ Y
@ vertex, and two y-mon&tone chains DAY yf@l
between top and bottom as its boundary /ﬁ%’/\j
B 7N

Any simple polygon with one top vertex m%}/q»&rmv\f?m(ﬂ
and one bottom vertex is y-monotone
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Vertex types

What types of vertices does a simple l
polygon have?

7 Wnl, ol T P“’)’?

v Y als W“’J/

® start— regular
o stop > &4 [ \*FT fdznrwa% ve 4 °
" o split > ch rd,.wJ/ fhe poy
® merge > s 1° 4P polygon ¥
o regular — oy [ e U
. Imagining a sweep line going top
to bottom
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

hevts It
“WS f%“zm\j jx\,r/‘\/;%z'%i% il The mwju%mff

Find diagonals from each merge
vertex down, and from each split
vertex up

A simple polygon with no sglit@

merge vertices can have at most one
start and one end vertex, so it is
y-monotone
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

explored A %)%Xwe/x)Flored

9&@? I

urﬁexplored j&%/ﬁ\ﬂ@@\ '\unexplored
s, ol TR
% 50" 4
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

MMV\\% 9? " /\

TR 2s R Wflp\ﬂﬁaﬁw

Where can a diagonal from aM
split vertex go? 7&9_4?\%’

Perhaps the upper endpoint of
the edge immediately left of
the split vertex?
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Triangulating a polygon

Sweep ideas

Where can a diagonal from a
split vertex go?

Perhaps the upper endpoint of
the edge immediately left of
the split vertex?

Computational Geometry

Towards an efficient algorithm
Partitioning into monotone pieces
Triangulating a monotone polygon
Triangulating a simple polygon
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

Where can a diagonal from a
split vertex go? I
sUtife (uolyfff“
Perhaps the upper endpoint of A

the edge immediately left of
the split vertex? \/V
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

Where can a diagonal from a
split vertex go?

Perhaps the last vertex passed
in the same “component”?
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

Where can a diagonal from a
split vertex go?

i

Perhaps the last vertex passed . &
in the same “component”?
Tw@ /fi\{\“ VW WY nM
Ao we Joods u77 ]Qram That
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Sweep ideas

Where can a diagonal from a
split vertex go?

Perhaps the last vertex passe
in the same “component” ?
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Helpers of edges

The helper for an edge e that
has the polygon right of it,

and a position of the sweep
line, is the lowest vertex v \‘> /

W
above the sweep line such that
the horizontal line segment

connecting e and v is inside ‘ ‘
the polygon
bk °\>fr“w
e (23 1 mmmm%i
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Towards an efficient algorithm
Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Status of sweep

The Is the set of edges
P P S e
intersecting the sweep line that

have the polygon to their |
right, sorted from left to right, /
and each with their helper: the A |

last vertex passed In that { \ {
component

Y\T(j

a;{ﬂef \/%’wx

M& nwd To M«F dﬁ(/c ’}/h)} 5‘”‘\‘-0‘5“4’0 2' we
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Status structure, event list

5 xi\Mok sphe 1. Gk st $ 75

The status structure stores all edges that have the polygon to

the right, with their helper, sorted from left to right in the

leaves alanced binary search tree

e cvents hovpen oy ot e vr
w@\’@* he events happen only at the vertices: sort them by
4(;\1@3 »-y-coordinate and put them in a list (or array, or tree)

g AT
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Towards an efficient algorithm
Partitioning into monotone pieces

Triangulating a polygon Triangulating a monotone polygon
Triangulating a simple polygon

Main algorithm

Initialize the event list (all vertices sorted by decreasing
y-coordinate) and the status structure (empty)

While there are still events in the event list, remove the first
(topmost) one and handle it
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Event handling

incident e
helper Y
24
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Event handling

LEnd! vertex v:

@ Delete the clockwise incident
edge and its helper from T
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Event handling

[rl?:guj}/ertex V:
=
@ |f the polygon i@of the two
incident edges, then replace the
ugg%wwge in
1", and make v the helper
e~~~ —
o If the polygon of the two
incident edges, then find the J
edge e directly left of v, and
replace its helper by v &ML
Wl?@{
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Towards an efficient algorithm
Partitioning into monotone pieces

Triangulating a polygon Triangulating a monotone polygon
Triangulating a simple polygon

Event handling

vertex v: !
X

@ Remove the edge clockwise
from v from T

@ Find the edge e directly left of | { \
v, and replace its helper by v
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Towards an efficient algorithm
Partitioning into monotone pieces

Triangulating a polygon Triangulating a monotone polygon
Triangulating a simple polygon

Event handling

Split vertex v: %@
@ Find the edge e directly left of
v, and choose as a diagonal the » 7ty
edge between its helper and v he/lrvf.

€
@ Replace the helper of e by v ?J%W\A \ \

@ Insert the edge counterclockwise
from v in T, with v as its helper
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Efficiency

pits S
¢
Sorting/all events by y-coordinate takes O(nlogn) time

Every event takes time, because it only involves
querying, inserting and déleting in T’

|
V5]
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Degenerate cases

Question: Which degenerate cases arise in this algorithm?




Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Representation

A simple polygon with some

diagonals is a subdivision =-

use a@ 5 Du?lh:afvd Corneste/d
e Ut

Question: How many Eﬂﬂ \L

diagonals may be chosen to
the same vertex?

RN WL AR
N LIRSl
R 2fo i) o) 1A
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

More sweeping

With an upward sweep in each
subpolygon, we can find a
diagonal down from every
merge vertex (which is a split
vertex for an upward sweep!)

\/

This makes all subpolygonfs
_ r
y-monotone /ﬂj?l\“}:) Y'\A
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Result

Theorem: A simple polygon with n vertices can be
partitioned into y-monotone pieces in O(nlogn) time

AR\ moﬁn it Dot . Oery
e g AR B AR

Vv\w M°j“
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

~ IRV 4 nefone /Myjm ’”\w% '
L0 hp A

How to triangulate a
y-monotone polygon?
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
y-monotone polygon?
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Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
y-monotone polygon?
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Triangulating a monotone polygon

How to triangulate a
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Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
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Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
y-monotone polygon?
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Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
y-monotone polygon?
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Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
y-monotone polygon?
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Triangulating a monotone polygon
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Towards an efficient algorithm
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Triangulating a monotone polygon

How to triangulate a
y-monotone polygon?

Computational Geometry Lecture 4: Triangulating a polygon



Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

The algorithm

@ Sort the vertices top-to-bottom by a merge of the two
hains o
C

@ Initialize a stack. Push the first two vertices

@ Take the next vertex v, and triangulate as much as
possible, top-down, while popping the stack

@ Push v onto the stack
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Result

Theorem: A simple polygon with n vertices can be
partitioned into y-monotone pieces in O(nlog®) time

Theorem: A monotone polygon with n vertices can be

triangulated O(n) time % covh vertex wil b Al m e
S‘t“b md renwweé
Can we immediately conclude: Frowv Some paint.

P Q’W\’ eavh wil| be handled
’?ij A simple polygon with n vertices can b@d Lwice - 2uch of 7hs,

7 JO(nlogn) time 777

) i handl topew constams
Wﬂﬁw\ﬂ% %'7},%%4

time . $ 1har0f""

0 »
LS 7 ’b”'%“ﬁ X / winy BV il inall it ) W
M " i% ¢ wf@lﬂ& L5 ¥ ok |inear time:
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Towards an efficient algorithm

Partitioning into monotone pieces
Triangulating a polygon Triangulating a monotone polygon

Triangulating a simple polygon

Result

We need to argue that all y-monotone polygons together that

we will triangulate have O(n) vertices

Initially we had n edges. We add at most n — 3 diagonals in
the sweeps. These diagonals are used on both sides as edges.
So all monotone polygons together have at most 3n — 6
edges, and therefore at most 3n — 6 vertices

Hence we can conclude that triangulating all monotone
polygons together takes only O(n) time

Theorem: A simple polygon with n vértices can be
triangulated O(nlogn) time
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