van Emde Boas Trees

e Intro => Ordered Set
Given a universe U = [u] where u = 2" maintain subset S C U, |S| = n under:
member (x, S)
insert(x, S)
delete(x, S)
empty (S)
min (S)
max (S)
predecessor(x, S)
successor(x, S)
* Naive
If we are willing to spend O(|U]) space

Store S as a bit-array L of length |U| such that L[x] = [z € S|, and keep track of the min and
max values explicitly.

H—4 RN u BB 0,1 B, 0 RIREM B RIXIEAE S, Hh1, MzesS,

Naive

Idea: If we are willing to spend O(|U|) space. ..

Store S as a bit-array L of length |U| such that L[x] = [x € 5], and keep
track of the min and max values explicitly.
u=|U|

. L '0 u —‘1
o] o[1]oJo 11 o]x oo 1 o o1 0]0]

{1,4,5,7,10,13}

How fast is:
empty(S), min(S), and max(S)? worst case O(1).
member(x,S)? worst case O(1).

predecessor(x, S) and successor(x, S)? worst case ©(|U|).

delete(x, S)? worst case O(|U]).
insert(x, S)? worst case O(1).

For predecessor and successor, the worst case is the predecessor (successor) is in the head
(end) of the array. Delete takes O(|U|) time for the worst case as it needs to maintain the min
and max. Go through the array to find the min and max. While insert only takes O(1). The step
is to set the corresponding value to 1, and compare it with the min and max in the data structure.

e Bit-Trie

Bit-Trie

Idea: Think of each key as a w-bit string describing a path in a binary
trie (= a special kind of tree). The naive structure ignores all
intermediate branches and jump directly to the leaves. What if we split
each key into a high and a low part?

summary

Aewwins

o o
= =
7] wn
-+ -+
e e
@ & clusters
= [
(=] =
&L O
o O (0]
o o o o - -
o = o= = o =
o o o - - o
= o = = o =
N N N N N N
I [I Il Il
= L o ~ [=
o w

e Twolevel

Twolevel

Idea: Split each key into high and low parts. Use naive for each.

Recall that U = [2"], and define:

. X w = log,|U| bits
hiw(x) := {W—J e
2w/ « (TTTTIII1 1]

lo,, (x) := x mod 2/"/2] :
hiy (x) low(x)
index,,(h, £) :== h-2["/21 4 ¢

note that x = indexy, (hiw(x), loy(x)).

Now let the structure directly store the values:
min := min(S) if S # 0, else 1
max := max(S) if S # 0, else 0
and use the naive structure to store
summary := {hi,(x) | w € S}
clusters[h] := {€ € [2["/?1] | indexy(h,¢) € S} Vhe [21"/2]
note that S = ;¢ pp1w/21;{indexw(h, £) | £ € clusters[h]}.

I B R A Summary , fIGfiE Cluster HAg—> Cluster 3 H XS W1 S AE S8, it
PZHY h B RTE, ELIn A 1101, Jsummary B3~ 00, 01, 10, DD R A cluster T 77 48 4

The worst case of the running time
empty (S), min(S), max(S) => O(1)

member (x, S) => O(1) + 1 X naive = O(1). R4 h FKEIXS BN cluster, TE cluster HiH

member X (naive) .

predecessor(x, S), successor(x, S) => 0(1) + 1 X naive = 2(1”/2]) = \/ ‘U))

Twolevel

We can draw the structure for the set S = {1,4,5,7,10,13} =
{0001,,0100,,0101,,0111,,1010,,1101,} C [2%] as: fyodccoss’v (X6 5)

i\/}:\ ;\/ﬁg hagh ~ ~N
y y /] SW'Y\Z’\j?‘ summary: E—— /Q " V% Al F/>
Jolel {002, 01,10,/11,) duser

D% M};\E\Au 7 clusters: %2)&n}\ 37’1 p}:i'ff'“'
% gm -a)i\ rra

Chuster SALPY AT min: \
1;9; {112‘;; 5\1": "]‘ émax_ \ o P b Glustor
e 0 M1 G st 7 ({012} [{002,01(4 } m }) 857

ofrin Lok i M pre R plwstor . ¥

How fast (worst case) is: " ’W\‘ function PREDECESSOR,, (x, S) —,ﬁ}’j X %/ L
> Assumes S # 0 and min(S) < x

empty(S), min(S), max(S)? if x > S.max then
0(1) return S.max EJ% SW\]
member(x, 5)? p + hiw(x), s + low(x), C + S.clusters[p]

O(1) + 1xnaive = O(1) if not EMPTY(C) and C.min < s then
predecessor(x S) successor(x, S)?

o(return index,, (p, PREDECESSOR[, /27 (s, C)) - ﬁm o|wswr
(@M/21) O(W) p 4 PREDECESSOR|, /2 (p, S.summary)
return index,, (p, S.clusters[p].max) i_?\ N

|5||"‘|/°|?|

RZEMHEN—E SV H—Kpredecessor, [fj Hpredecessori&HTE[w/2] LH,

delete(x, S) =>O0(1) + 2 x naive = O(y/|U|). P A3 MFi 4> substructure HLAELH, FiTLL

Ji 2 X naive = 2 x ©(21%/21),
insert(x, S) => O(1) 4+ 2 X naive = O(1). [AFREZIHEANPIIK, LI E2 X naive,
e Recursive

Instead of using the naive structure for summary and clusters[h], recursively use the same type
of structure (stop recursion when w = 1).

R =R X
Il
=N D

1000
%0010
1010
‘1110

T

14

S

L
0T = %0101
€T = 1011

From my perspective, we recursively divide the original part, including the original high part and
low part, by 2 until the number of the bit equals to 1. In the original case, the summary has

converted into a substructure with high part and low part.

Recursive

Idea: Instead of using the naive structure for summary and clusters[h],
recursively use the same type of structure (stop recursion when w = 1).

We can draw the recursive structure for the set S = {1,4,5,7,10,13} =
{009'12,01002,01012,01112, 1010,, 11015} C [29] as:
1

And this new structure is called "proto-vEB".
e Recursive - Theorem => Theorem 1

The recursion depth of this structure, when used on the universe U = [2V] is
[log, w| = O(loglog |U|).

Recursive

Theorem
The recursion depth of this structure, when used on the universe

= [2%] is [log, w]| = O(loglog|U|).
Proof. V=2

Let d(w) be the recursion depth when working with a universe of size
2" . We will prove by induction that d w

_ o — ol

15RO NECULS
d(1) =0 = [log,(1)]. A" Al
For the induction case, suppose W > at ¢ :
all w @Now let w [w/2j-4ﬁ+, e largest universe sjze
used in the recursion |@and 7% 2
i

d(w) {1 d(w') = 1 F flogy(w')] = [loga(@w')]. /s -
If w |s=§\7§)lr: 2w’ :@n we are done. \ \Q

Otherwise w is odd and w > 3 so the smallest integer k = [log,(w)] 6

such that 2ﬁust also be the smallest integer k = [log,(2w’)] such
that g @ w + 1 and therefore [log,(2w’)] = [log,(w)]. O
R0 =wr
S_

Running Time

/

empty (S), min(8) and max(8) => O(1).

member (x, S) =>O0(1) 4+ 1 x recursion = O(d(w)) = O(loglog |U|). iR ZH 7, 4
— 8 Bl P B G R B I IR i 2

predecessor(x, S),and successor(x, S) =

O(1) + 1 x recursion = O(d(w)) = O(loglog |U|).

insert(x, S) anddelete(x, S) =
O(1) + 2 x recursion = ©(24®) = ©(w) = O(log |U]).

If w is even, the depth of the summary and the depth of each cluster is the same.

XFRXA T, —URIERGE A T FEcluster P i IS E FRSCEHr, 55— RaEAE A T #Esummary
HLH Hrminflimax .

o VEB: worst case O(loglog |U|) time

vEB: worst case O(log log|U|) time

Idea: Exclude min(S) and/or max(S) from the set of keys stored in
summary and clusters. (CLRS excludes only min(S), | exclude both).

Specifically, redefine summary and clusters to recursively store the sets:

summary := {hi,(x) | w € S\ {min, max}}
clusters[h] := {£ € [2["/?1] | index,,(h,£) € S\ {min,max}} Vh e [2l*/2]]

We can draw the van Emde Boas tree for the set 5 =
{1,4,5,7,10,13} = {0001,,0100,,0101,,0111,,1010,,1101,} C [2*] as:

1 0 W) Summery rolumiw’
iy mafme i ﬁ%‘\""‘"

summary: [e]
clusters: |»|*

min: /| %001z
max/ 1101,

The basic idea is that each substructure do not have the redundent data. For example, 0001
as the min in the set, the substructure of the summary has already stores the minimum 0001,
therefore, there is no need to store this value in the other substructures. The reason that the first
cluster’s substructure is empty (max > min) is because the corresponding summary 00 related value

0001 already stored in the top level structure.
Running Time

PREDECESSORw (x, S)

vEB: worst case O(loglog|U|) time, O(|U|) space

1: function PREDECESSOR,(x,S) > Assumes S # () and x > S.min
2 if x > S.max then
3 return S.max
4: if w=1 then
5: return S.min
6 p < hi,(x), s < lo,(x), C < S.clusters|p]
7 if not EMPTY(C) and C.min < s then
8 return index,, (p, PREDECESSOR([, /2] (s, C))
9: if EMPTY(S.summary) or p < S.summary.min then
10: return S.min
11: p < PREDECESSOR|,, /2| (p, S.summary)
12: return index,, (p, S.clusters[p].max)
Theorem

PREDECESSOR,, (X, S) takes worst case O(d(w)) = O(loglog|U|) time.

Proof:
It makes at most one recursive call. O

1. First, exclude the case that x > S. maz.
2. Then, exclude the case that w = 1.

3. Calculate the high part and low part. Otherwise, we are in a case where we may have to do

recursion.
Afterline 7, S. min < z < S. mazx.

4. If the corresponding cluster is not empty and the cluster.min < s, then return the value by
doing a recursive call to the PREDECESSOR.

5. If the summary is empty or p < S. summary which means this value is the second

minimum in the set. Return S. min.

6. Otherwise, call the PREDECESSOR (p, S.summary) to find the previous p and return the
corresponding cluster's maximum.

Theorem -2

PREDECESSORw (x,S) takes worst case O(d(w)) = O(loglog |U|) time.

Proof

By observing the pseudocode, we know that the recursion depth is a d(w) which is log log |U|
and this function does at most one recursive call and everything else takes constant time.

INSERTw(x, S)

vEB: worst case O(loglog|U|) time, O(|U|) space

1: function INSERT, (X, S) > Assumes x € S
2 if EMPTY(S) then
3 S.min < x, S.max < x, return
4: if S.min = S.max then
5: if x < S.min then $S.min « x
6 if x > S.max then S.max + x
7 return
8 if x < S.min then $.min &)x
9: if x > S.max then S.max 4 x
10: p < hi,(x), s < lo,(x)
11: if EMPTY(S.clusters[p]) then
12: INSERT |, /2| (P, S.summary)
13 INSERT [y /2] (S, S.clusters[p])
Theorem
INSERT,, (x, S) takes worst case O(d(w)) = O(log log|U|) time.
Proof.
It makes at most one recursive call on a non-empty substructure, and
inserting in an empty substructure takes constant time. 0

e RS-vEB

RS-vEB: expected O(log log|U|) time, O(nloglog|U|)
space

Idea: Use a hash table instead of an array to store clusters[-], and don't
store empty substructures.

Why does this change updates from worst case O(log log|U|) to expected
O(log log|U|) time? Because updates to a hash table take expected O(1)
time rather than worst case.

Why does this only use O(n- d(w)) = O(nloglog|U|) space? Because
the empty structure uses O(1) space and INSERT,, only creates or
updates O(d(w)) substructures in the worst case. Each of these costs at
most an additional O(1) space

« R°S-VEB

R?S-vEB: expected O(log log|U|) time, O(n) space

Idea: Partition S into “chunks” of size ©(min{n, loglog|U|}), and store
only one element representing each chunk in the RS-vEB structure. |.e.
RS-vEB stores only O(max{1, n/log log|U|}) elements, using O(n) space.

We can store each chunk as a sorted linked list, and keep a hash table
mapping each representative to its chunk. This also takes O(n) space.

PREDECESSOR and SUCCESSOR uses the RS-vEB structure to find the
nearest two representatives in O(loglog|U|) time, and can then spend
linear time in the size of the two chunks to find the result.

INSERT may have to split a chunk that becomes too large and insert a
new representative in the RS-vEB structure. Splitting the chunk can take
linear time in the size of the chunk, and together with inserting the new
representative into the RS-vEB structure, this still only takes expected
O(log log|U|) time.

Similarly, DELETE may have to join two chunks and delete a
representative, but again this only takes expected O(log log|U|) time.

	van Emde Boas Trees

