
van Emde Boas Trees

Intro => Ordered Set

Given a universe where maintain subset under:

member(x, S)

insert(x, S)

delete(x, S)

empty(S)

min(S)

max(S)

predecessor(x, S)

successor(x, S)

Naive

If we are willing to spend space

Store as a bit-array of length such that , and keep track of the min and
max values explicitly.

⽤⼀组⼤⼩为 的数列存 值， 表⽰该位置所表达的值不在 中，若为 ， 则 。

For predecessor and successor, the worst case is the predecessor (successor) is in the head
(end) of the array. Delete takes time for the worst case as it needs to maintain the min
and max. Go through the array to find the min and max. While insert only takes . The step
is to set the corresponding value to , and compare it with the min and max in the data structure.

Bit-Trie

Twolevel

此时的⾼位是 Summary，低位是 Cluster 且每⼀个 Cluster 接收其对应的⾼位作为参数，如果对
应的 h 没有的话，⽐如没有1101，则summary⾥只剩下 ，则对应的cluster则存空集。

The worst case of the running time

empty(S), min(S), max(S) =>

member(x, S) => . 根据 找到对应的 ，在 ⾥调⽤
 找（ ）。

predecessor(x, S), successor(x, S) => .

最差的情况⼀定会调⽤⼀次predecessor，⽽且predecessor是⽤在 上的。

delete(x, S) => . 因为得删两个 substructure ⾥的数据，所以
是 。

insert(x, S) => . 同样是要插⼊两次，所以也是 。

Recursive

Instead of using the naive structure for summary and clusters[h], recursively use the same type
of structure (stop recursion when w = 1).

From my perspective, we recursively divide the original part, including the original high part and
low part, by 2 until the number of the bit equals to 1. In the original case, the summary has
converted into a substructure with high part and low part.

And this new structure is called "proto-vEB".

Recursive - Theorem => Theorem 1

The recursion depth of this structure, when used on the universe is
.

Running Time

empty(S), min(S) and max(S) => .

member(x, S) => . 如果该数存在，那么
⼀定要遍历整个结构找到最底层所存的数。

predecessor(x, S), and successor(x, S) =>
.

insert(x, S) and delete(x, S) =>
.

If w is even, the depth of the summary and the depth of each cluster is the same.

对于这两个⽅法，⼀次迭代是为了在cluster的最底层中做更新，另⼀次迭代是为了在summary
⾥更新min和max。

vEB: worst case time

The basic idea is that each substructure do not have the redundent data. For example, 0001
as the min in the set, the substructure of the summary has already stores the minimum 0001,
therefore, there is no need to store this value in the other substructures. The reason that the first
cluster's substructure is empty (max > min) is because the corresponding summary 00 related value
0001 already stored in the top level structure.

Running Time

PREDECESSORw(x, S)

1. First, exclude the case that .

2. Then, exclude the case that .

3. Calculate the high part and low part. Otherwise, we are in a case where we may have to do
recursion.

After line 7, .

4. If the corresponding cluster is not empty and the cluster.min < s, then return the value by
doing a recursive call to the PREDECESSOR.

5. If the summary is empty or which means this value is the second
minimum in the set. Return .

6. Otherwise, call the PREDECESSOR(p, S.summary) to find the previous and return the
corresponding cluster's maximum.

Theorem - 2

PREDECESSORw(x,S) takes worst case time.

Proof

By observing the pseudocode, we know that the recursion depth is a which is
and this function does at most one recursive call and everything else takes constant time.

INSERTw(x, S)

RS-vEB

R2S-vEB

	van Emde Boas Trees

